A.D.M COLLEGE FOR WOMEN (AUTONOMOUS),

(Nationally Re-accredited with 'A' Grade by NAAC- 3rd Cycle) NAGAPATTINAM- 611 001

PG & RESEARCH DEPARTMENT OF CHEMISTRY

(For the candidates admitted from the academic year 2021-2023)

M.Sc., CHEMISTRY

SYLLABUS

2021-2023

A.D.M COLLEGE FOR WOMEN (AUTONOMOUS), Nagapattinam

UG Programme - M.Sc Chemistry

(For the candidates admitted from 2021 – 2022 onwards)

Bloom'sTaxonomy BasedAssessment Pattern

KnowledgeLevel

K1– Acquire/	K2–Understanding	K3–Apply	K4– Analyze	K5–Evaluate	K6 – Create
Remember					

1.Part I,IIandIII

Theory(External+Internal=75+ 25=100marks)

	Exter	nal/Internal			
KnowledgeLevel	Section	Marks	Hrs	Total	Passing Mark
K1-K3	A(Answer all)	10 ×2 =20			
K3-K6	B(Eitherorpattern)	$5 \times 5 = 25$	3	75	38
K3-K6	C(Answer 3 out of 5)	3 ×10 =30			

PG AND RESEARCH DEPARTMENT OF CHEMISTRY (For the candidates admitted from 2021 – 2022) M.Sc. CHEMISTRY

Programme Educational Objectives (PEO):

PEO 1:	To develop critical analysis and problem solving skills required to interpret the data into structures and mechanisms.
PEO 2:	Gain knowledge of experimental techniques and instrumentation enables to work independently in research in different areas at a global level.
PEO 3:	Actively participate in organizing and presenting acquired knowledge coherently both orally and in written discourse relating to chemistry
PEO 4:	To prepare the students to successfully compete for current employment opportunities and emerge as entrepreneurs.
PEO 5:	Work alongside of physicists, engineers, environmentalists, biomedical scientists, pharmacists, doctors and other professionals to help solving scientific problems.

Programme Outcomes (POs)PG

On completion of the course the learner will be able

PO 1:	Acquire knowledge in major areas of chemistry.
PO 2:	Perform chemical analysis to determine composition of various chemical
	compounds.
PO 3:	Use knowledge of chemistry for solving problems in environmental, food
	processing, pharmaceutical, biochemical, agriculture, fuels and chemicals, textile
	processing, mining and many other industries.
PO 4:	Use modern tools and techniques in literature survey, designing synthesis and
	characterizing crystals.
PO 5:	Manage information, develop technical reports and make presentations.

Programme Specific Outcomes (PSO) M.Sc.,

.

On completion of the course the learner will be able

PSO 1:	Introduce advance techniques and ideas required in developing area of chemistry.
PSO 2:	Provide theoretical background and develop practical skills for analyzing materials
	using modern analytical methods and instruments.
PSO 3:	Inculcate a problem solving approach provide coordinating the different branches
	of chemistry.
PSO 4:	Effectively communicate themes relating to chemistry
PSO 5:	Proficient in their specialized area of chemistry and acquire the basic tools needed
	to carry out.

PG AND RESEARCH DEPARTMENT OF CHEMISTRY

COURSE STRUCTURE OF PG PROGRAMME – M.Sc CHEMISTRY

Papers	No. of Courses	Hours	Credit
Core papers& practicals	14	84	61
Elective papers	5	30	25
Project	1	6	4
Total	20	120	90

Marks / Papers	C.I.A	S.E
Theory Paper	25	75
Practical Paper	40	60

Passing Minimum

A candidate shall be declared to have passed in each course if she secures not less than

40% marks in the End Semester Examination and 40% marks in the Continuous Internal Assessment and not less than **50% in the aggregate**, taking Continuous Internal Assessment and End Semester Examination marks together.

A.D.M. COLLEGE FOR WOMEN (AUTONOMOUS), NAGAPATTINAM PG & RESEARCH DEPARTMENT OF CHEMISTRY M.Sc., CHEMISTRY

Course Structure under CBCS

(For the candidates admitted from the academic year 2021-2022 onwards)

				Ins.	~	Exam	Ma	rks	Total
Sem.	Part	Course	Course	Hrs	Credit	Hours	CIA	SE	Marks
		Code							
	III	PGQA	CC I -Organic Chemistry I	6	6	3	25	75	100
	III	PGQB	CC II-Inorganic Chemistry I	6	5	3	25	75	100
	III	PGQC	CC III-Physical Chemistry I	6	5	3	25	75	100
I	III	PGQDY	CP I-Organic Chemistry practical I	6	3	6	40	60	100
	III	PGQEY	CP II-Inorganic Chemistry practical I	6	3	6	40	60	100
			Total	30	22	-	-	-	500
	III	PGQF	CC IV -Inorganic Chemistry II	6	5	3	25	75	100
	III	PGQG	CC V-Physical methods in chemistry –I	6	6	3	25	75	100
	III	PGQHY	CP III-Organic Chemistry practical II	6	3	6	40	60	100
	III	PGQIY	CP IV-Inorganic Chemistry practical II	6	3	6	40	60	100
II	III		EC I-Non-Conventional Energy	6	5	3	25	75	100
		PGQE1	sources/ Computer applications and						
			C programming						
		1	Total	30	22	-	-	-	500

				Ins.	Credit	Exam		rks	Total
Sem.	Part	Course Code	Course	Hrs	Creun	Hours	CIA	SE	Marks
	III	PGQJ	CC VI -Organic Chemistry-II	6	5	3	25	75	100
	III	PGQK	CC VII -Physical Chemistry II	6	6	3	25	75	100
ш	III	PGQLY	CP V -Physical Chemistry Practical–I	6	3	6	40	60	100
	III	PGQE2	EC II- Industrial Chemistry/ Bioinorganic Chemistry	6	5	3	25	75	100
	III	PGQE3	EC III- Green Chemistry /Molecular modeling and drug design	6	5	3	25	75	100
			Total	30	24	-	-	-	500
	III	PGQM	CC VIII- Physical methods in Chemistry-II	6	5	3	25	75	100
	III	PGQNY	CP VI-Physical Chemistry Practical –II	6	3	6	40	60	100
	III	PGQE4	EC IV- Applied Chemistry/ Forensic Science	6	5	3	25	75	100
	III	PGQE5	EC V- Recent Trends in Chemistry /Petrol and Petrochemical products	6	5	3	25	75	100
IV	III	PGQP	Project	6	4	3	25	75	100
			Total	30	22	-	-	-	500
	1		Grand Total	120	90	-	-	-	2000

Semester- I / Core Course-I	ORGANIC CHEMISTRY I	Course Code: PGQA
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks -25	External Marks - 75	Total Marks: 100

Cognitive	K1- Acquire / Remember	
Level	K2- Understanding	
	K3- Apply	
	K4- Analyze	
	K5- Evaluate	
	K6- Create	
Course	• Understand the basic concepts of aromaticity.	
Objectives	• Learn the oxidation and reducing reagents for organic synthesis.	
	• Gain in depth knowledge in stereo chemistry of organic compounds.	
	• Illustrate the effect of light in organic reactions.	
	• Study the concerted pericyclic reactions.	
UNIT	CONTENT	HOURS
Ι	AROMATICITY	
	Aromatic character: Five, six, seven-, and eight membered rings - other	18
	systems with aromatics extets-Huckel'stheoryofaromaticity, concept of	
	homo aromaticity and antiaromaticity.Electron occupancy in MO's and	
	aromaticity - NMR concept of aromaticity and antiaromaticity,	
	systems with 2,4,8 and 10 electrons, systems of more than	
	10electrons (annulenes), Mobiusaromaticity. Bonding properties of	
	systems with (4n+2) π -electrons and 4n π - electrons, alternantand non-	
	alternant hydrocarbons (azulenetype)-aromaticity in hetero aromatic	
	molecules, sydnones and fullerenes.	

II	REAGENTS INORGANIC SYNTHESIS	
	Oxidation :Baeyer-Villiger, Jacobsen epoxidation,	18
	Shiepoxidation, Jones reagent, PCC, PDC ,IBX, DMP ,CAN,	
	TPAP, NOCl, Mn (OAc)3, Cu(OAC)2 ,Bi2O3,Swern oxidation,	
	Sommelet reaction, Elbsreaction, Oxidative coupling of phenols,	
	Prevost reaction and Woodward modification.	
	Reduction palladium /platinum /rhodium /nickel based heterogeneous	
	catalysts for hydrogenation, Wilkinson's catalyst, Noyori asymmetric	
	hydrogenation-reductions using Li/Na /Cainliquid ammonia.Hydride	
	transfer reagents from group III and groupIV inreductions.	
	(i)triacetoxyborohydride, L-selectride, K-selectride, Luche reduction,	
	Red-Al,NaBH4 and NaCNBH3 ,trialkyl silane sandtri alkyl stannane	
	(ii)stereo/enantios electivity reductions (Chiral Boranes, Corey- akshi-S	
	hibata).	
III	STEREOCHEMISTRY AND CONFORMATIONAL ANALYSIS	
	Stereoisomerism– symmetry– enantiomers and diastereomers $-R$ and S	18
	nomenclature optical activity and chirality- types of molecules	
	exhibiting optical activity-absolute configuration-chirality in molecules	
	with non- Carbon stereocenters (N,SandP) – molecules with more than	
	one chiral centre-atropisomerism.Molecularchirality -allenes, spiranes	
	,biphenyls, helicenes and cyclophanes-methods of determining	
	configuration $-E$ and Z nomenclature–determination of configuration of	
	geometrical isomers – stereochemistry of addition and elimination	
	reactions - stereospecific and stereoselective synthesis [elementary	
	examples].Basic concepts of conformations of cyclopentane	
	,cyclohexane, cyclo hexene and fused (decalin) and bridged	
	(norbornane type) ring systems-anomeric effect in cyclic compounds.	
IV	ORGANICPHOTO CHEMISTRY	18
	Organic photochemistry -fundamental concepts- energy transfer	
	characteristics of photoreactions-photoreduction and photooxidation,	
	photosensitization.Photoreactions of ketones and enones- NorrishTypeI	
	and IIreactions- Paterno- Büchi reaction-photo- Fries rearrangement -	

	photochemistry of alkenes, dienes and aromatic compounds– di- π - methane rearrangement.Reactions of unactivated centres – photochemistry of α , β -unsaturated carbonylcompounds–photolytic cyclo additions and photolytic rearrangements–photoadditions– Bartonreaction.	
V	PERICYCLICREACTIONS Concerted reactions– orbital symmetry and concerted symmetry – Woodward and Hoffmann rules–selection rules for electrocyclic reactions– frontier molecular orbital approach–correlation diagram– examples.Selection rules for cyclo addition reactions– frontier molecular orbital approach-correlation diagram–examples–chelotropic and ene reactions.Sigmatropic rearrangements– 1,3, 1,5 and 1,7-hydrogen shifts – examples –Cope and Claisen rearrangements – 1,3-dipolar cyclo addition reactions: types of dipoles, selectivity, scope and applications.	18
VI	Molecular dissymmetry, specific and molar rotation, polarimetry , E,Z notation, optical isomerism of lactic and tartaric acids.	-

- 1.J.March and M. B. Smith, March's Advanced Organic Chemistry:Reactions,Mechanisms, and Structure; 7thEd.,Wiley,NewYork,2013.
- 2.R.K. Bansal, Organic Reaction Mechanisms; 11thEd.,TataMcGrawHill, Noida,2006.

Reference Book:

- 1. I.L.Finar, OrganicChemistry; Vol.II, 7thEd.,Pearson education Ltd, NewDelhi,2009.
- F.A.Careyand R.J.Sundberg, Advanced Organic Chemistry PartsAandB, 5thEd.,Springer,Germany,2007.
- 3. T.H.E. Lowry and K.S.Richardson, Mechanism and Theory in Organic Chemistry; Addison-Wesley, USA1998.
- 4. E.L.Eliel, and S.H.Wilen, Stereochemistry of Organic Compounds; John Wiley, NewYork, 1994.

 J.Clayden, N. Greeves, S.Warren, and P. Wothers, Organic Chemistry; 1stEd. Oxford University Press, UK, 2000.

Web - Resources:

- 1. https:// www.quora.com
- 2. https://www.rsc.org
- 3. https://www.e-booksdirectory.com

Course Outcomes:

On completion of the course the learner will be able

CO 1:Gain the knowledge in the field of stereochemistry.

CO 2:To introduce synthetic methodology of preparation of compounds.

CO 3:Discuss the various methods of determination of Reaction mechanism.

CO 4:Explain the criteria for Chirality and discuss axial, Planar and helical chirality

CO 5:Disuss the photochemistry of pi-pi* transitions

Mapping of Course outcomes with Programme outcomes / Programmes Specific outcomes:

CO/PO			PO							
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	Μ	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	Μ	Μ	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S- Strongly Correlated M- Moderately Correlated W- Weakly Correlated N- No Correlation

Semester- I / Core Course-II	INORGANIC CHEMISTRY I	Course Code:PGQB
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks -25	External Marks - 75	Total Marks: 100

Cognitive	K1- Acquire / Remember	
Level	K2- Understanding	
	K3- Apply	
	K4- Analyze	
	K5- Evaluate	
	K6- Create	
Course	• Understand the basic concepts of main group elements.	
Objectives	• Detection of complex formation and factors affecting stability.	
	• Learn the theories and mechanism of reactions of metal complexes.	
	• Describe bonding in coordination compounds.	
	• Study the concepts of photochemistry and its applications.	
UNIT	CONTENT	HOURS
Ι	MAIN GROUP CHEMISTRY	18
	Chemistry of boron-borane, higher boranes, carboranes, borazines	
	and boron nitrides-chemistry of silicon-silanes, higher silanes,	
	multiple bonded systems, disilanes, silicon nitrides.P-N	
	compounds, cyclo phosphazanes and cyclo phosphazenes - S-N	
	compounds – S2N2, S4N4, (SN)x, polythiazyl S _X N4 compounds –	
	S-N cations and anions, S-P compounds -molecular sulphides such	
	as P4S3, P4S7, P4S9 and P4S10-homo cyclic inorganic systems-	
	oxo carbonanion.Ionic model – lattice energy – Born-Lande	
	equation - Kapustinskii equation - high Tc super conductors -	
	solid state reactions - tarnish reaction decomposition, solid-soild	
	reaction and photo graphic process-factors affecting reaction rate.	
II	PRINCIPLES OFCOORDINATION CHEMISTRY	
	Studies of coordination compounds in solution- detection of complex	18
	formation in solution- stability constants-stepwise and overall	

	photometric methods) of determining the formation	
	constants.Factors affecting stability –statistical and chelate effects–	
	forced configurations.	
III	THEORIES OF METAL- LIGAND BOND	18
	Crystal field theory – splitting of d-orbitals under various geometries	
	– factors affecting splitting– CFSE and evidences for CFSE (structural	
	and thermodynamic effects).Spectrochemical series - Jahn-Teller	
	distortion - spectral and magnetic properties of complexes-site	
	preferences.Limitations of CFT- ligand field theory- MO theory-	
	sigma- and pi-bonding in complexes- Nephelauxetic effect-the	
	angular overlap model.	
IV	REACTION MECHANISM IN COORDINATION	18
	COMPLEXES	
	Kinetics and mechanism of reactions in solution – labile and inert	
	complexes - ligand displacement reactions in octahedral and	
	square planar complexes - acid hydrolysis, base hydrolysis and	
	anation reactions.Trans effect - theory and applications - electron	
	transfer reactions - electron exchange reactions-complementary and	
	non-complementary types-inner sphere and outer sphere processes -	
	application of electron transfer reactions in inorganic complexes -	
	isomerisation and racemisation reactions of complexes.Molecular	
	rearrangements of four- and six- coordinate complexes -	
	interconversion of stereoisomers - reactions of coordinated ligands -	
	template effect and its applications for the synthesis of macro cyclic	
	ligands – unique properties.	
V	INORGANIC PHOTOCHEMISTRY	18
	Electronic transitions in metal complexes, metal-centered and	
	charge-transfer transitions-various photo physical and photo	
	chemical processes of coordination compounds.Uni molecular	
	charge-transfer photo chemistry of cobalt(III) complexes -mechanism	
	of CTTM, photo reduction-ligand- field photochemistry of	
	chromium(III) complexes-Adamson's rules, photo active excited	
	states, V-Cmodel- photo physics and photo chemistry of ruthenium -	

	poly pyridine complexes, emission and redox
	properties.Photochemistry of organo metallic compounds- metal
	carbonyl compounds –compounds with metal-metal bonding–
	Reinecke's salt chemical action meter.
VI	Basic concepts of organometallic compounds- metal metal bonds, -
	theories of metal ligand, metal carbonyls and metal nitrosyls-
	synthesis and structure.

- 1.M. C. Day, J. Selbin and H. H. Sisler, Theoretical Inorganic Chemistry; LiteraryLicensing(LLC),Montana,2012.
- 2.F.A.CottonandG.Wilkinson,C.A.MurilloandM.Bochmann,AdvancedInorgan ic Chemistry; 6th Ed., A Wiley - Interscience Publications, John Wiley andSons,USA,1999

References:

- R. K. Sharma, Inorganic Reactions Mechanism; Discovery Publishing House, NewDelhi, 2007.
- 2.S.F.A.Kettle,PhysicalInorganicChemistry A Coordination Chemistry Approach,Spectrum;AcademicPublishers, Oxford University Press,NewYork 1996.
- 3.A.W.AdamsonandP.D.Fleischauer,ConceptsofInorganicPhotochemistry;R.E. KriegerPubs,Florida,1984.
- 4.J.Ferraudi, Elements of Inorganic Photochemistry; Wiley, New York, 1988.
- 5.F. Basolo and R. G. Pearson, Mechanism of Inorganic Reactions; 2ndEd., JohnWiley,NewYork,1967.

Web - Resources:

- 1. <u>www.sciencedirect.com</u>
- 2. https://sites.google.com
- 3. www.freebookcentre.net

On completion of the course the learner will be able

CO 1: Gain idea about the recent advances in Inorganic chemistry

CO 2: Identify the synthesis, structure and bonding of carbon-pi-donor complexes

CO 3: Calculate magnetic moment & crystal field Stabilization energy of metal complexes.

CO 4: Explain about different type of electron transfer Reaction (one electron transfer reaction

& direct electron transfer reaction) and factors affecting them.

CO 5: Acquire knowledge about the basic principles of photo inorganic chemistry

Mapping of Course outcomes with Programme outcomes / Programmes Specific Outcomes:

СО/РО	РО						PSO				
	1	2	3	4	5	1	2	3	4	5	
CO1	S	S	S	S	S	S	S	S	S	S	
CO2	S	S	S	S	S	S	S	S	S	S	
CO3	S	S	S	S	S	S	S	S	S	S	
CO4	S	Μ	S	S	Μ	S	S	S	S	S	
CO5	S	S	S	S	S	S	S	S	S	S	

S- Strongly Correlated

M- Moderately Correlated

W- Weakly Correlated

Semester- I / Core Course-III	PHYSICAL CHEMISTRY I	Course Code:PGQC
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks -25	External Marks - 75	Total Marks: 100

Cognitive	K1- Acquire / Remember	
Level	K2- Understanding	
	K3- Apply	
	K4- Analyze	
	K5- Evaluate	
	K6- Create	
Course	• Understand the concepts of group theory and quantum chemistry.	
Objectives	• Learn the chemical kinetics and statistical thermodynamics.	
	• Study the theories of kinetics, photo chemistry and radiation chemistry	·.
	• Describe the importance of statistical mechanics.	
	• Acquire knowledge about quantum statistics.	
UNIT	CONTENT	HOURS
Ι	CONCEPTS OF GROUP THEORY	
	Symmetry elements and operations - point groups - assignment of	18
	point groups to molecules-group postulates and types of groups -	
	group multiplication tables, sub groups, similarity transformations -	
	conjugate elements and classes. Matrix representation of symmetry	
	operations and point groups - reducible and irreducible	
	representations-properties of irreducible representation. The great	
	orthogonality theorem-construction of character table - direct product-	
	projection operators-symmetry of hybrid orbitals.	
II	QUANTUM CHEMISTRY-I	
	Inadequacy of classical mechanics-black body radiation-Planck's	18
	quantum concept-photo electric effect-Bohr's theory of hydrogen	
	atom- hydrogen spectra-wave-particle dualism - uncertainty principle	
	- decline of old quantum theory.Schrödinger equation-postulates of	
	quantum mechanics -operator algebra linear operator, Hermitian	

	operators, eigen functios and eigen values, angular momentum	
	operator-commutationrelationsandrelated theorems-	
	orthogonalityandnormalization. Applications of wave mechanics to	
	simple systems – particle in a box, one and three dimensional,	
	particle with finite potential barrier-the quantum mechanical	
	tunneling	
III	CHEMICAL KINETICS-I	
111	Theories of reaction rate – absolute reaction rate theory (ARRT) –	18
		10
	transmission coefficient, reaction coordinate-potential energy surfaces	
	- kinetic isotope effect-Hinshelwood theory-Kassel,Rice and	
	Ramspergertheory (KRRT)–Slater'streatment.Principle of microscopic	
	reversibility-steady-state approximation-chain reactions: thermal and	
	photochemical reactions between hydrogen and halogens-explosions	
	and hydrogen-oxygen reactions.	
IV	STATISTICAL THERMODYNAMICS	18
	Thermodynamic probability –probability theorems–relation between	
	entropy and probability (Boltzmann Planck equation), ensembles, phase	
	space, Ergodichypothesis, microstates and macro states, Maxwell-	
	Boltzmann distribution law partition functions- translational,	
	rotational, vibrational and electronic partition functions.Relationship	
	between partition functions and thermodynamic properties-calculation	
	of equilibrium constants from partition functions – heat capacities of	
	monatomic crystals-Einstein theory and Debyetheory.Quantum	
	statistics – Bose-Einstein (B.E.) and Fermi-Dirac (F.D.) distribution	
	equations – comparison of B.E. and F.D. statistics with Boltzmann	
	statistics-applications of quantum statistics to liquid helium ,	
	electrons in metals and Planck's radiation law-concept of negative	
	Kelvin temperature.	
V	FAST REACTION TECHNIQUES, PHOTO CHEMISTRY	
	ANDRADIATIONCHEMISTRY	18
	Introduction-flow methods (continuous and stopped flow methods) –	
	relaxation methods (TandP jump methods) – pulse techniques (pulse	
	radiolysis, flash photolysis)–shocktube method–molecular beam	
	radiolysis, flash photolysis)-shocktube method-molecular beam	

_			
		method-life time method.Photo physical processes of electronically	
		excited molecules -Jablonski diagram Stern-Volmer equation and its	
		applications-experimental techniques in photochemistry-chemical	
		actinometers -lasers and their applications.Differences between	
		radiation chemistry and photo chemistry – sources of high energy	
		radiation and interaction with matter-radiolysis of water, solvated	
		electrons – definition of G value, Curie, linear energy transfer (LET)	
		and Rad-scavenging techniques- use of dosimetry and dosimeters in	
		radiation chemistry-applications of radiation chemistry.	
ŀ	VI	Units of rate constants for different orders of the reactions- Comparison	
	V I	Units of fate constants for unrefere orders of the reactions- Comparison	
		between order and molecularity of a chemical reaction.	

- 1.Horia Metiu, PhysicalChemistry, Thermodynamics; Taylor and Francis, Singa 2006.
- 2.K.K.Rohatgi-Mukherjee, Fundamentals of Photo chemistry;3rdEd., New Age International Pvt.Ltd., New Delhi,2014.
- 3.J. W. T. Spinks and R. J. Woods, Introduction to Radiation Chemistry; 3rdEd.,John Wiley and Sons, New York, 1990.Wiley and Sons, New York, 1990.

References:

- 1.F.A.Cotton, Chemical Applications of Group Theory; 3rdEd., John Wiley and Sons, Singapore,2003.
- 2.A.K.Chandra, Introductory Quantum Chemistry; 4thEd., Tata Mc GrawHill, Noida, 1994.
- 3.D.A.Mcquarrie, Quantum Chemistry; University Science Books, Sausalito, 2008.
- 4.I.N.Levine, Quantum Chemistry; 5thEd., Prentice Hall, New Jersey, 2000.
- 5.R. K. Prasad, Quantum Chemistry; 4thEd., New AgeInternational Publishers, New Delhi, 2014.

Web- Resources:

- 1. http://libguide.reading.ac.uk
- 2. http://library.iiti.ac.in

On completion of the course the learner will be able

CO 1:Identify the point groups of molecules and apply the concept of group theory topredict the spectroscopic properties.

CO 2: Explain the concept of black body radiation, operators, commutation of Operators, eigen function, eigen value and well behaved function.

CO 3:Learn the concept of entropy, 3rd law of thermodynamics &evaluation of absolute entropy from heat capacity data

CO 4: Give the concept of distribution and probability and derive Boltzmanndistribution law.

CO 5:Describe types of photo chemical reactions and Photo Sensitization reaction.

Mapping of Course outcomes with Programme outcomes / Programmes Specific outcomes:

СО/РО	РО								Р	SO
	1	2	3	4	5	1	2	3	4	5
CO1	S	Μ	S	S	S	S	S	S	S	S
CO2	S	Μ	S	Μ	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S- Strongly Correlated

M- Moderately Correlated

W- Weakly Correlated

Semester- I / Core Practical-I	ORGANIC CHEMISTRY PRACTICAL I	Course Code: PGQDY
Instruction Hours: 6	Credits: 3	Exam Hours: 6
Internal Marks -40	External Marks-60	Total Marks: 100

Course Objectives	 To perform the qualitative analysis of a given organic mixture. To carry out the preparation of organic compounds. 	
	CONTENT	HOURS
	1. Qualitative analysis of an organic mixture containing two components	
	Mixtures containing two components are to be separated (pilot separation) and purified (bulkseparation) – physical constants are to be reported (analysis)	6
	2. Preparation of organic compounds (single stage)1. Methyl-m-nitro benzoate from ethyl benzoate (nitration)	
	2. Glucose penta acetate from glucose (acetylation)	
	3. Resacetophenone from resorcinol (acetylation)4. Benzo phenone oxime from benzophenone (addition)	
	5. o-Chlorobenzoic acid from anthranilic acid (Sandmayerreaction)6. p-Benzoquinone from hydroquinone (oxidation)	
	7. Phenylazo-2-naphthol from aniline (diazotization)	

- 1. J.Mohan, Organic Analytical Chemistry: Theory and Practice; Narosa, 2003.
- 2. V.K.Ahluwalia P.Bhagat, and R.Agarwal, Laboratory Techniques in Organic Chemistry; I.K. International, 2005.

References:

1.N.S.Gnanaprakasamand G.Ramamurthy, OrganicChemistry LabManual; S.V.Printers, 987.

2.A.I.Vogel, A.R.Tatchell, B.S.Furniss, A.J.Hannaford and P.W.G.Smith, Vogel's Text book of Practical Organic Chemistry; 5thEd., Prentice Hall, 1989.

Web - Resources:

1. https://organicchemistrydata

Course Outcomes:

On completion of the course the learner will be able

CO 1:Gain knowledge on the skills of doing separation, preparation of chemical compounds.

CO 2:Learn about the methods of qualitative analysis of organic compounds

Mapping of Course outcomes with Programme outcomes / Programmes Specific outcomes:

CO/PO	РО				PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S

S- Strongly Correlated

M- Moderately Correlated

W- Weakly Correlated

Semester-I/	INORGANIC CHEMISTRY PRACTICAL I	Course Code:PGQEY
Core Practical-II		
Instruction Hours: 6	Credits: 3	Exam Hours: 6
Internal Marks -40	External Marks-60	Total Marks: 100

Course Objectives	Perform the semi micro qualitative analysis.Estimate the metal ions using colorimeter.					
	CONTENT	HOURS				
	1.Semi-micro qualitative analysis of amixture containing two					
	common cations (Pb, Bi, Ca, Cd, Fe, Cr, Al, Co, Ni, Mn, Zn,	6				
	Ba, Sr, Ca, Mg, NH4) and two less common cations (W, Tl, Se,					
	Te, Mo, Ce, Th, Zr, Ti, V, U, Li).					
	2.Estimation of copper, ferric, nickel, chromium and manganese ions					
	using photo electric colorimeter					

1.V.V.Ramanujam, Inorganic Semimicro Qualitative Analysis; 3rdEd., National Pubs, London, 1988.

2.G.Svehla, Text Book of Macro and Semi micro Qualitative Inorganic Analysis; 5thEd.,Longman group Ltd, London, 1987.

Reference Book:

 A.I.Vogel, Text Book of Quantitative Inorganic Analysis; 6th Ed., Longman, New Delhi, 2000

Web - Resources:

1. <u>http://edu.rsc.org</u>

On completion of the course the learner will be able to

CO 1:Understand advanced method of estimation of metal ions through complexation

CO 2:Acquire knowledge about colorimetric analysis.

Mapping of Course outcomes with Programme outcomes / Programmes Specific outcomes:

СО/РО	РО								Р	SO
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	Μ	S	S	S	S	S	S

S- Strongly Correlated

M- Moderately Correlated

W- Weakly Correlated

Semester-II /	INORGANIC CHEMISTRY-II	Course Code: PGQF
Core Course- IV		
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K1- Acquire / Remember	
Level	K2- Understanding	
	K3- Apply	
	K4- Analyze	
	K5- Evaluate	
	K6- Create	
Course	• Understand the role of metal ions in biological process.	
Objectives	• Learn the basic concepts of chemotherapy.	
	• Know the principle of catalysis and reaction mechanis	sms of
	organometallics.	
	• Illustrate the structure and bonding in organometallics.	
	• Acquire knowledge in the field of medicinal bioinorganic chemistry.	
UNIT	CONTENT	HOURS
Ι	GENERAL PRINCIPLES OF BIOINORGANIC CHEMISTRY	
	Occurrence and availability of inorganic elements in biological	18
	systems- bio mineralization-control and assembly of advanced	
	materials in biology-nucleation and crystal growth-various bio	
	minerals-calcium phosphate - calcium carbonate - amorphous	
	silica, iron bio minerals – strontium and barium sulphate.	
	Function and transport of alkali and alkaline earth metalions:	
	characterization of K ⁺ ,Na ⁺ ,Ca ²⁺ and Mg ²⁺ complexes of alkali	
	and alkaline earth metal ions with macrocycles-ion channels- ion	
	pumps, catalysis and regulation of bio energetic processes by the	
	alkaline earth metalion s–Mg ²⁺ and Ca ²⁺ .	
	Metals at the center of photosynthesis – primary processes in	
	photosynthesis – photosystems I and II-light absorption (energy	
	acquisition)- excitation transport (directenergytransfer)-charge	
	separation and electron transport-manganese catalyzed oxidation	

	of water to O2.	
II	AMINES , PROTEINS AND ENZYMES	
	Cobalamines: reactions of the alkyl cobalamines - one electron	18
	reduction and oxidation-Co-Cbond cleavage - coenzyme B12-	
	alkylation reactions of methyl cobalamin.	
	Heme and non-heme proteins - haemoglobin and myoglobin -	
	oxygen transportand storage-electron transfer and oxygen activation	
	- cytochromes, ferredoxins and rubredoxin-model systems,	
	mononuclear non- heme iron enzymes.	
	Copper containing proteins- classification and examples- electron	
	transfer- oxygen transport-oxygenation-oxidases and reductases-	
	cytochrome oxidase-Superoxide dismutase (Cu,Zn)-nickel	
	containing enzyme: urease.	
III	MEDICINAL BIOINORGANIC CHEMISTRY	
	Bioinorganic chemistry of quintessentially toxic metals-lead,	18
	cadmium, mercury, aluminium, chromium, copper and	
	plutonium- detoxification by metal chelation- drugs that act by	
	binding at them etalsites of metallo enzymes.	
	Chemotherapy- chemotherapy with compounds of certain non-	
	essential elements - platinum complexes in cancer therapy -	
	cisplatin and its mode of action-cytotoxic compounds of other	
	metals.	
	Gold containing drugs as anti- rheumatic agents and their mode of	
	action –lithium in psycho pharmacological drugs–	
	radiopharmaceuticals- technetium.	
IV	ORGANOMETALLICS:	18
	The 18 electronrule –applications and limitations–isolobal concept	
	and its usefulness-uses of typical organometallics such as metal	
	alloys and organometallic hydrides in organic synthesis.	
	Nitrosyl complexes - bridging and terminal nitrosyls, bent and	
	linear nitrosyls -dinitrogencomplexes-metallocene and arene	
	complexes-metalcarbenes, carbones, carboxylate anions.	
	Classification based on captivity and polarity of M-Cbond,	

	organometallic compounds of lanthanides and actinides-fluxional	
	organometallic compounds- organometallics in	
	medicine,agriculture,horticulture and industry.	
V	REACTIONS AND CATALYSIS BY ORGANOMETALLICS:	
	Organometallic reactions- ligand association and dissociation -	18
	oxidative addition and reductive elimination-insertion reactions.	
	Reactions of coordinated ligands in organometallics-hydrogenation,	
	hydroformylation, epoxidation, metathesis.	
	Polymerization of olefins, olefin oxidation (Wacker process) and	
	carbonylation of methanol.	
VI	Antenna effect and funneling of electronic energy in supramolecular	
	assemblie, Generation of 9 9 m Tc chelates	

- J.E. Huheey, Inorganic Chemistry;4thEd., Harper and Row Publishers,Singapore,2006.
- K.F. Purcell and J.C. Kotz, Inorganic Chemistry; Thomson Learning, Boston, 1980.
- 3. S.J. Lippardand J.M. Berg, Principles of Bioinorganic Chemistry;Panima Publishing Company, NewDelhi,1997.

Reference Books:

1.W. Kaim and B. Schewederski, Bioinorganic Chemistry: Inorganic

Elements in the Chemistry of Life; 2ndEd., John Wiley and Sons,NewYork,USA,2013.

2.G.L.Eichhorn, Inorganic Bio chemistry; Volumes1and2, 2ndEd., Elsevier Scientific Publishing Company, NewYork,1975.

3.F.A.Cotton and G.Wilkinson, Advanced Inorganic Chemistry; 6thEd., JohnWiley and Sons ,NewYork,1999.

4.R.C. Mehrotra and A.Singh, Organometallic Chemistry; 2ndEd.,New Age International Ltd.NewDelhi,2014.

5.R. H. Crabtree, The Organometallic Chemistry of the Transition Metals; 3rdEd.,JohnWiley and Sons, NewYork,2001.

Web- Resources:

1.https://guides.loc.gov

2.https://chem..libretexts.org

Course Outcomes:

On completion of the course the learner will be able

CO 1: Apply the basic principles in bioinorganic chemistry.

CO 2: Illustrate the role of metal in biological system and their function.

CO 3: Describe the structural and functional relationship, mechanisms and importance of metalloenzymes.

CO 4: Tabulate the role of metal ions in enzymes involved in acid-base reactions.

CO 5: Explain the role of metal ions that are involved in electron –transfer reactions in biological systems.

Mapping of Course outcomes with Programme outcomes / Programmes Specific outcomes:

/PO		PO						PSO		
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	Μ	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	Μ	S	S	S	S	S	S
CO5	S	Μ	S	S	S	S	S	S	S	S

S- Strongly Correlated

M- Moderately Correlated

W- Weakly Correlated

Semester-II /	PHYSICAL METHODS IN	Course Code:PGQG
Core Course-V	CHEMISTRY -I	
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K1- Acquire / Remember	
Level	K2- Understanding	
	K3- Apply	
	K4- Analyze	
	K5- Evaluate	
	K6- Create	
Course	• Understand the principles of molecular spectroscopy.	
Objectives	• Study UV, NMR and IR spectroscopy of organic compounds.	
	• Learn the ESR, ORD and Mass spectroscopy of organic compound	nds.
	• Know the effect of X-ray, electron, neutron diffractions of compour	ds.
	• Illustrate the transitions through electronic spectroscopy.	
UNIT	CONTENT	HOURS
Ι	PRINCIPLES OF MOLECULAR SPECTROSCOPY	
	Interaction of electromagnetic radiation with molecular systems –	18
	time evolution of the systems under radiation-Einstein transition	
	probability for induced absorption and spontaneous and stimulated	
	emission – transition moment and oscillator strength.	
	Microwave spectroscopy-rotational spectra of diatomic molecules,	
	rigid and non-rigid rotors - intensity of spectral lines - effects of	
	isotopic substitution -microwave spectra of poly atomic	
	molecules- linear and symmetric top molecules-infrared spectra-	
	diatomic molecules, simple harmonic and anharmonic oscillators-	
	diatomic vibrating rotator rotation – vibration spectrum of carbon	
	monoxide- interaction of rotation and vibration(breakdown of	
	Born-Oppenheimer approximation) – influence of the rotation on	
	the spectrum of poly atomic molecules, linear and symmetric top	
	molecules, parallel and perpendicular vibrations-influence of	
	nuclear spin.	

		I
	Raman spectra-rotational Raman spectra of linear and symmetric	
	top molecules- vibrational Raman spectra- rotational fine	
	structure-electronic spectra of diatomic molecules-vibrational	
	coarse structure-intensity of vibrational lines in electronic	
	spectra-rotational fine structure - fortrat diagram.	
II	NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY	
	¹ H NMR Spectroscopy – multiplicity – coupling constant – spin-	18
	spin splitting -vicinal and germinal coupling constants Karplus	
	equation long range coupling constants, influence of stereo	
	chemical factors on chemical shift of protons. Simplification of	
	complex spectra – double resonance techniques, shifts reagents–	
	chemical spin decoupling of rapidly exchangeable	
	protons(OH,SH,COOH,NH,NH2)-an elementary treatment of	
	NOE phenomenon.	
	¹³ CNMR Spectroscopy–broadband decoupling– off resonance	
	decoupling- chemical shifts of common functional groups- FT	
	NMR and its importance DEPT spectra-identification of small	
	compounds based on NMR data-2Dtechniques: ¹ H-	
	¹ HCOSY, ¹ H– ¹³ CHETCOSY–NOESY.	
III	UV-VISIBLE AND IR SPECTROSCOPY	
	UV- Visible spectroscopy- introduction-instrumentation,	18
	sampling techniques- Woodward-Fieser and Scott's rules for	
	conjugated dienes and polymers, ketones, aldehydes, α , β -	
	unsaturated acids, esters, nitriles, an amides-differentiation of	
	geometrical isomers and positional isomers-di subsitituted benzene	
	derivatives-study of steric effect in aromaticity.	
	Infrared spectroscopy- Introduction- instrumentation, sampling	
	techniques- factors influencing group frequencies - quantitative	
	studies – hydrogen bonding (intermolecular and intra molecular).	
IV	ESR, ORD AND MASS TECHNIQUES	18
	ESR – basic principles – comparison between ESR and NMR	
	spectra – hyperfinesplitting–applications to organic free	
		l

	radicals. Optical rotatory dispersion and circular dichroism -	
	introduction to theory and terminology- cotton effect- ORD	
	curves-axial halo ketone rule and its applications- the octant	
	rule-its applications applications of ORD to determine absolute	
	configuration of monocyclic ketones – comparison between ORD	
	and CD-their interrelationships.	
	MassSpectrometry- instrumentation- resolution- ESI, EI, CI	
	and FAB methods-basepeak, isotopic peaks, metastable peaks	
	importance of metastable peaks, parentpeak, recognition of	
	molecular ion peak-fragmentation – general rules – pattern of	
	fragmentation for various classes of compounds, McLafferty	
	rearrangement– nitrogenrule.	
	Application of UV, IR,NMR and massspectroscopy- structural	
	elucidation of organic compounds- (minimum 15problems	
	shouldbe worked out).	
V	X-RAY DIFFRACTION	
	X- Ray diffraction by single crystal method – space groups –	18
	systematic absences in X-ray data and identification of lattice	
	types, glide planes and screw axes-X-ray intensities – structure	
	factor and its relation to intensity and electron density-phase	
	problem– structure solution by heavy atom method and direct	
	method-determination of absolute configuration of molecules-a	
	brief account of Cambridge Structural Database (CSD) and Protein	
	Data Bank(PDB).	
	Electron diffraction by gases – scattering intensity vs. scattering	
	angle, Wierl equation-measurement techniques.	
Unit VI	Comparison of X-ray, electron and neutron diffraction methods.	
Self Study	Methods of simplifying complex NMR spectra- NMR shift	
	reagents and high field NMR	
		L

 C.N.Banwell, Fundamentals of Molecular Spectroscopy; 4thEd.,McGraw Hill Education, Noida, 1994.

- 2. B.P.StraughanandS.Walker,Spectroscopy;Vol.3,HalsteadPress, Sydney,1978.
- G.M. Barrow, Introduction to Molecular Spectroscopy; McGrawHill, NewYork,1964.

Reference Books:

- 1. W.Kemp,Organic Spectroscopy;3rdEd.,Palgrave,NewYork,1991.
- J.R.Dyer, Applications of Absorption Spectroscopy of OrganicCompounds, PHIL earning, NewDelhi, 2009.
- 3. Y.R.Sharma, Elementary Organic Spectroscopy–Principles and Chemical applications; S.Chand,NewDelhi,1992.
- P.S.Kalsi, Spectroscopy of Organic Compounds; 6thEd.,New Age International Publishers, NewDelhi,2004.
- 5. W.Clegg, Crystal Structure Determination; Oxford University press, UK, 1998.

Web - Resources:

1.https://chemistry.snu.edu.in

2.https://libretexts.org

Course Outcomes:

On completion of the course the learner will be able

CO 1: Describe the selection rule for Infrared -active transitions.

CO 2: Compare and contrast atomic and molecular spectra.

CO 3: Apply spectral concepts to solve the problems, elucidate structures of simple compounds

CO 4: Perform the most commonly used NMR experiment to interpret and document their results.

CO 5: Gain knowledge of the fine structure of ESR absorption, Hyperfine structure, Double resonance in ESR and techniques of ESR spectroscopy.

СО/РО	РО						PSO				
	1	2	3	4	5	1	2	3	4	5	
CO1	S	S	S	S	S	S	S	S	S	S	
CO2	S	S	S	S	S	S	S	S	S	S	
CO3	S	S	S	S	S	S	S	S	S	S	
CO4	S	S	S	S	S	S	S	S	S	S	
CO5	S	S	S	S	S	S	S	S	S	S	

Mapping of Course outcomes with Programme outcomes / Programmes Specific outcomes:

S- Strongly Correlated M- Moderately Correlated W- Weakly Correlated

Semester-II /	ORGANIC CHEMISTRY II(P)	Course Code: PGQHY
Core Practical-III		
Instruction Hours: 6	Credits: 3	Exam Hours: 6
Internal Marks -40	External Marks-60	Total Marks: 100

Course Objectives	Carry out the qualitative analysis of an organic mixture.Perform the preparation of organic compounds.	
	CONTENT	HOURS
	1. QUANTITATIVE ANALYSIS OF ORGANIC	
	COMPOUNDS	
	Estimation of phenol, aniline, ketone, glucose, nitrobenzene,	
	saponification value of an oil and iodine value of oil.	
	2. PREPARATION OF ORGANIC COMPOUNDS	
	(DOUBLE STAGE)	6
	a. <i>p</i> -Bromoacetanilide from aniline(acetylation and	
	bromination)	
	b. Acetyl salicylicacid from methyl salicylate(hydrolysis and	
	acetylation)	
	c. 1,3,5-Tribromobenzene from aniline (bromination,	
	diazotization and hydrolysis)	
	d. <i>p</i> -Nitro aniline from acetanilide (nitration and hydrolysis)	
	e. Benzilic acid from benzoin (rearrangement)	
	f. <i>p</i> -Aminobenzoic acid from p-nitrotoluene (oxidation and reduction)	
	g. Benzanilide from benzophenone (rearrangement)	
	h. <i>p</i> -Bromoaniline from acetanilide (bromination and hydrolysis)	
	i. <i>m</i> -Nitroaniline from nitrobenzene(nitration and reduction)	
	1,2,4-Triacetoxybenzenefromhydroquinone(oxidation and acylation)	

On completion of the course the learner will be able to

CO 1: Study the estimation of chemicals, which provide knowledge about the purity and concentration

CO 2: Expertise in organic synthetic methods

Mapping of Course outcomes with Programme outcomes / Programmes Specific outcomes:

CO/PO	РО				PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S

S- Strongly Correlated M- Moderately Correlated W- Weakly Correlated N- No Correlation

Semester-II / Core Practical- IV	INORGANIC CHEMISTRY II(P)	Course Code: PEQIY
Instruction Hours: 6	Credits: 3	Exam Hours: 6
Internal Marks -40	External Marks-60	Total Marks: 100

Course Objectives	Carry out the titrimetric and gravimetric analyses.Perform the preparation of compounds							
	CONTENT	HOURS						
	1. Titrimetry and Gravimetry							
	A mixture of solution(s) should be given for							
	Estimation of Cu(V) and Ni(G)							
	Cu(V) and Zn(G)							
	Fe(V) and Zn(G)							
	Fe(V) and Ni(G)	6						
	ZnI and Cu(G)							
	2 .Preparationofcomplexes							
	1.Tris(thiourea) copper(I) chloride							
	2.Tetraammine copper(II) sulphate							
	3.Potassium tri oxalate ferrate							
	4.Potassium tri 34xalate aluminate(III)							
	5.Potassium tri 34xalate chromate(III)							
	6.Hexammine cobalt(III)chloride							

Reference Books:

1. A.I.Vogel,	Text	Book	of	Quantitative	Inorganic
Analysis;6 th Eo	d.,Longma				

:

On completion of the course the learner will be able to

- CO 1: Develop skills in systematic qualitative analysis of mixture.
- CO 2: Get training in the complexometric titration.
- CO 3: Gain skillto prepare inorganic complexes.

Mapping of Course outcomes with Programme outcomes / Programmes Specific outcomes:

CO/PO PO							PSO			
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S

S- Strongly Correlated

M- Moderately Correlated

W- Weakly Correlated

Semester-II / Elective Course-I	NON-COVENTIONAL ENERGY SOURCES	Course Code:PGQE1
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K1- Acquire / Remember	
Level	K2- Understanding	
	K3- Apply	
	K4- Analyze	
	K5- Evaluate	
	K6- Create	
Course	• Understand the various types of energy sources.	
Objectives	• Learn about the solar energy	
	• Introduce the importance of wind energy & fuel cells.	
	• Acquire knowledge about bio energy.	
	• Know the differential power plants	
UNIT	CONTENT	HOURS
Ι	ENERGY SOURCES	
	Introduction to energy - Different forms of energy - Primary &	18
	Secondary Energy sources - Various types of Conventional Energy	
	Sources- Fossil fuel energy, Hydraulic energy & Nuclear energy -	
	Various types of Non-Conventional Energy Sources - Wind energy, Tidal	
	energy & Solar energy.	
П	SOLAR ENERGY	
	Introduction - Solar Constant - Solar Radiation at the Earth's Surface -	18
	Solar Energy applications - Solar Cooker - Design principle ,	
	constructional details and limitations of Solar Cooker - Solar Water heater	
	- Solar distillation - Solar Pumping - Electricity from Solar Energy - Street	
	lighting system.	
III	WIND ENERGY AND FUEL CELLS	
	Wind energy - Classification of wind mills - Horizontal Wind mills,	18
	Vertical Wind Mills – Advantages & Disadvantage of Wind energy. Fuel	

	cells – Introduction - Working of Fuel Cells - Advantages of Fuel Cells.	
IV	BIO ENERGY	18
	Introduction - Bio Gas and its Compositions - Process of Bio gas,	
	generation - Wet Process, dry Process - Raw Materials available for Bio	
	gas Fermentation - Constructional Details of Biogas Plant - Utilization and	
	benefits of Biogas Technology - Economical, social environmental and	
	health benefits of bio gas - Utilization - KVIC Bio gas Plant - Advantages	
	of Bio Gas technology.	
V	TIDAL POWER PLANTS	
	Introduction to Tidal Power Plants - Classification of tidal Power	18
	Plants - Working of different Tidal Power Plants - Factors affecting	
	the suitability of the site for tidal power plant - Advantages and	
	disadvantages of Tidal Power Plants - Components of Tidal Power	
	plants.	

- 1. G.D Raj, Non– Conventional Energy Sources, Khanna Publisher, 1998.
- 2.G.S. Sawhney ,Non –Conventional Energy Sources, PHIL earning, 2005.
- 3.N.K Bansal, Non-Conventional Energy Source, Vikas Publishinghouse.
- 4.B.H. Khan, Non Conventional Energy Sources, McGraw Hill Publications, 3rd Edition

Reference Books:

- Roger H.Charlier, Charles W. "Ocean Energy- Tide and Tidal Power" ISBN: Library of Congress Control Number :2008929624_c Springer-Verlag Brerlin Heidelberg 2009.
- John F.Walker& N.Jenkins, "Wind Energy Technology", John Willey and Sons Chichester, U.K-1997.
- 3. T.H.Taylor Alternate Energy Sourcesby. Adam Hilger Ltd, Bristol

Web- Resources:

https://www.topfreebooks.org

On completion of the course the learner will be able

CO 1: To ensure the students understand the basic concept of energy.

CO 2: Understand the solar devices such as solar cooker, solar water heater.

CO 3: Get awareness about the wind energy and conversion to the generation of power.

CO 4: An introduction of composition of biogas and generation of power.

CO 5: Study about the principles of tidal power plant

Mapping of Course outcomes with Programme outcomes / Programmes Specific outcomes:

CO/PO		РО					PSO				
	1	2	3	4	5	1	2	3	4	5	
CO1	S	Μ	S	S	S	S	S	S	S	S	
CO2	S	Μ	S	S	S	S	S	S	S	S	
CO3	S	S	S	S	S	S	S	S	S	S	
CO4	S	S	S	S	S	S	S	S	S	S	
CO5	S	М	S	S	S	S	S	S	S	S	

- **S- Strongly Correlated**
- **M- Moderately Correlated**
- W- Weakly Correlated

Semester- III / Core Course-VI	ORGANIC CHEMISTRY II	Course Code: PGQJ
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K1- Acquire / Remember	
Level	K2- Understanding	
	K3- Apply	
	K4- Analyze	
	K5- Evaluate	
	K6- Create	
Course	• To understand the nucleophilic and electrophilic substitution reactions.	
Objectives	• To learn the addition and elimination reactions.	
	• To introduce advanced level study in addition reactions.	
	• To study a variety of heterocycles.	
	• To know the chemistry of terpenoids, steroids and alkaloids.	
UNIT	CONTENT	HOURS
Ι	NUCLEOPHILICSUBSTITUTION REACTIONS	
	Aliphatic nucleophilic substitution-mechanisms-SN1,SN2,SNi-	18
	ion-pair in SN1mechanisms-neighbouring group participation,	
	non – classical carbocations-substitutions at allylic and vinylic	
	carbons.	
	Reactivity-effect of structure, nucleophile, leaving groupand stereo	
	chemical factors-correlation of structure with reactivity- solvent	
	effects -rearrangements involving carbocations - Wagner-	
	Meerwein and dienone-phenol rearrangements.	
	Aromatic nucleophilic substitutions - SN1, SNAr, Benzyne	
	mechanism - reactivity orientation-Ullmann, Sandmeyer and	
	Chichibabin reaction-rearrangements involving nucleophilic	
	substitution-Stevens-Sommelet- Hauserandvon - Richter	
	rearrangements.	
II	ELECTROPHILIC SUBSTITUTION REACTIONS	
	Aromatic electrophilic substitution reaction orientation, reactivity	18

	pyrrolidines – tetrahydro pyrans – piperidines.	
	non-aromatic hetero cycles – synthesis of tetra hydro furans–	
	Nomenclature: Trivial, systematic and replacement nomenclature –	
IV	HETERO CYCLES	18
:	elimination-Bredt's rule with examples.	
	dehydration, dehydro halogenation, Hofmann degradation, Cope	
	cis-elimination, Chugaev reaction – examples such as	
	competition between elimination and substitution – pyrolytic	
	chemistry of elimination, Hofmann's and Zaitsev's rules -	
	Elimination reactions-mechanisms;E1,E2,E1cB-stereo	
	condensation and Reformatsky reactions.	
	Benzoin, Knoevenagel, Stobbe, Darzens glycidic ester	
	dimethyl cuprate)-addition to carbon-oxygen double bond-	
	mechanism – Grignardreagents–1,2-and1,4-additions (lithium	
	Addition to carbonyl and conjugated carbonyl systems -	
	ozonolysis.	
	boration leading to formation of alcohols – oxidation and	
	hydrogen bromide,hydroxylation,1,2-dihydroxylation–hydro	
	stereo chemical factors influencing the addition of bromine and	
	nucleophilic and free radical additions-orientation of the addition -	
	Addition to carbon-carbon multiple bonds – electrophilic,	18
III	ADDITION AND ELIMINATION REACTIONS	
	diazonium salts.	
	electrophile in substitution reactions and decomposition of	
	mechanisms – diazonium coupling reactions-metals as	
	Aliphatic electrophilic substitution – SE2, SEi and SE1	
	equation, Taft Equation.	
	Hammett parameters – and, modified forms of Hammett	
	Hammett correlation–effect of structure on reaction mechanisms	
	Substituent effects-origins of Hammett equation – principles of	
	quantitative treatment of the structural effects on reactivity.	
	reactions –substitutions in thiophene and pyridine –N-oxide –	

	Synthesis and reactivity of hetero cycles: aziridines – oxiranes –	
	thiiranes –azetidines – oxetanes – oxazoles – imidazoles – thiazoles –	
	isooxazoles.	
	Synthesis and reactivity of aromatic hetero cycles: pyrazoles-	
	isothiazoles-triazoles-pyrimidines-purines-triazines-pyridazines-	
	pyrazines.	
V	NATURAL PRODUCTS	
	Terpenoids: introduction – biosynthesis of menthol, camphor – total	18
	synthesis: Takasago synthesis of menthol, Corey's synthesis of	
	longifolene, Curran's synthesis of hirsutene.	
	Steroids: introduction- partial synthesis of androsterone and	
	testosterone (from Cholesterol) – total synthesis: Johnson's	
	synthesis of progesterone and Vollhardt's synthesis of estrone.	
	Alkaloids: introduction – biosynthesis of nicotine,camptothecin–	
	total synthesis: Corey's synthesis of epibatidine, Comin's	
	asymmetric synthesis of Camptothecin and Woodward's	
	synthesis of reserpine.	
VI	Hydrolysis of alkyl halides, acyl halides, anhydrides, carboxylic	
	esters and amides.	

1. T.H.E. Lowry and K.S. Richardson, Mechanism and Theory in Organic Chemistry; 3rdEd.,Benjamin- CummingsPublishing,USA,1997.

2.J.March and M.B. Smith, Advanced Organic Chemistry: Reactions, Mechanisms and Structure,6thEd.,Wiley,NewYork,2007.

3. R.K.Bansal, Heterocyclic Chemistry; 3rdEd., Wiley Eastern Ltd, NewDelhi, 1999.

Reference Books:

- S.H. Pine and J.B. Hendrickson, D.J. Cram and G.S. Hammond, Organic Chemistry; 5thEd., McGrawHill, Noida,1987.
- 2. R.K.Bansal, Reaction Mechanismin Organic Chemistry; Tata McGrawHill, Noida,1990.
- 3. Androsterone and Testosterone: J.Chem. Soc. Perkin Trans.I; 1986,117.

4. E.J.Corey,andX-M.Cheng, The Logic of Chemical Synthesis;1stEd.,Wiley-Interscience,NewYork,1995.

5. J.Clayden,N.Greeves,S.Warren,andP.Wothers,OrganicChemistry,2ndEd.,Oxfor dUniversityPress,UK,2012.

Web- Resources:

1. https://www.elsevier.com

2. https://www.amazon.in

Course Outcomes:

On completion of the course the learner will be able to

CO 1:Acquire knowledge about nucleophilic substitution reactions.

CO 2:Learn nomenclature synthesis and reactivity of hetero cyclic compounds

CO 3:Elucidate the structure and synthetic route of heterocyclic compounds

CO 4:Learn the different types of alkaloids, glycosides and terpenes etc.. and their chemistry and medicinal importance.

CO 5:Learn advanced methods of structural elucidation of compounds of natural origin.

Mapping of Course outcomes with Programme outcomes / Programmes Specific outcomes:

CO/PO	PO								PSO	
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S- Strongly Correlated

M- Moderately Correlated

W- Weakly Correlated

Semester- III /	PHYSICAL CHEMISTRY II	Course Code:PGQK		
Core Course-VII				
Instruction Hours: 6	Credits: 6	Exam Hours: 3		
Internal Marks -25	External Marks-75	Total Marks: 100		

Cognitive	K1- Acquire / Remember	
Level	K2- Understanding	
	K3- Apply	
	K4- Analyze	
	K5- Evaluate	
	K6- Create	
Course	• Study the applications of quantum chemistry and group theory.	
Objectives	• Quantum chemistry uses high- level mathematics as a tool to understand a	atomic and
	molecular structure and properties, as well as chemical reactivity.	
	• Understand and use the term angular momentum in many electronsystems.	
	• Learn electrochemistry, adsorption and classical thermodynamics.	
	• Familiar with the concept of surface chemistry.	
UNIT	CONTENT	HOURS
Ι	QUANTUM CHEMISTRY - II AND GROUP THEORY	
	Applications of wave mechanics-the harmonic oscillator, rigid rotator	18
	hydrogen and hydrogen like atoms - shapes and nodal properties of	
	orbitals space quantization - approximation methods - methods of	
	variation, application hydrogen and helium atoms-perturbation	
	method – non- degenerate systems heliumatom-effective nuclear	
	charge.Electron spin - many electron atoms - Pauli's principle -	
	Slater determinants – atomicstructurecalculation-self-consistent	
	field method– Hartree- Fock method for atoms – angular	
	momentum in many electron systems - spin-orbit interaction, L-	
	Sand j- j coupling schemes.Symmetry adapted linear combinations	
	(SALC) - vibrational spectra-symmetry properties of normal	
	molecules – symmetry coordinates – selection rules for	
	fundamental vibrational transition-IR and Raman activity of	

	fundamentals in CO2,H2O,N2F2-the rule of mutual exclusion and	
	Fermiresonance.	
II	ELECTROCHEMISTRY – I	
	Ion transport in solution – migration, convection and diffusion –	18
	Fick's laws of diffusion conduction-Debye- Huckel theory-ionic	
	atmosphere –Debye - Huckel- Onsager equation – verification and	
	extension–Debye-Falken hagen effect and Wien effect, Debye-Huckel	
	limiting law – activity coefficients and ionic strength–Bjerrum model.	
	The electrode - electrolyte interface - electrical double layer and multi	
	layers -theories-electro capillary curves - Lipmann equation and	
	Lipmann potential.Electro kinetic phenomena - classification - Tiselius	
	method of separation of proteins-membrane potential - electro catalysis.	
III	ELECTROCHEMISTRY – II	
	Dynamics of electron transfer - Marcus theory - tunneling - the rate of	18
	charge transfer - current density-Butler - Volmer equation -Taft	
	equation-polarization and over voltage - mechanism of hydrogen	
	evolution and oxygen evolution reactions.	
	Principles of electro deposition of metals - corrosion and passivity -	
	Pourbaix and Evans diagrams - methods of protection of metals from	
	corrosion.Power storage systems - fuel cells-construction and	
	functioning – applications- Photo voltaic cells.	
IV	SURFACE CHEMISTRY AND CHEMICAL KINETICS - II	18
	Surface phenomena-Gibbs adsorption isotherm - solid - liquid	
	interfaces -contact angle and wetting-solid-gas interface -	
	physisorption and chemisorption-Langmuir, BET isotherms-surface area	
	determination.	
	Kinetics of surface reactions involving adsorbed species-Langmuir-	
	Hinshelwood mechanism, Langmuir - Rideal mechanism - Rideal -	
	Eley mechanism-some interfacial aspects on micelles ,rever	
	semicelles, micro emulsions and membranes.	
	Application of ARRT to solution kinetics -effect of solvent and ionic	
	strength, influence of pressure on rates in solution-enzyme catalysis -	
	mechanism of single substrate reactions - Michaelis - Mentenlaw -	

	acidity functions-kinetics of processes in micellar and rever semi cellar	
	systems.	
V	CLASSICAL THERMODYNAMICS	
	Third law thermodynamics-significance-Nernst heat theorem and other	18
	forms of stating the third law - thermodynamic quantities at absolute	
	zero – apparent exceptions to the third law.	
	Thermodynamics of systems of variable composition-partial molar	
	properties-Chemical potential – relationship between partial molar	
	quantities-Gibbs - Duhem equation and its applications (the	
	experimental determination of partial molar properties not	
	included).Thermodynamic properties of real gases - fugacity concept -	
	calculation of fugacity of real gas – activity and activity coefficient –	
	concept – definition –standard states and experimental determinations of	
	activity and activity coefficient of electrolytes.	
	Thermodynamics of irreversible processes: coupled flow - Onsager's	
	reciprocal relations-entropy production.	
VI	Zeroth, first, second and third laws of thermodynamics properties	-
	that emerge out these laws.	

- A.K. Chandra, Introductory Quantum Chemistry; 4thEd., Tata Mc Graw Hill, Noida, 1994.
- 2. D.A. Mcquarrie, Quantum Chemistry; University Science Books, Herndon, 2008.
- 3. R.K. Prasad, <u>Quantum Chemistry</u>; 4thEd., New Age International Publishers, New Delhi,2014.

Reference Books:

- 1. K.J. Laidler, Chemical Kinetics; 3rdEd., PrenticeHall, NewJersey, 1987
- **2.** L. Antropov, Theoretical Electro chemistry; University Press of the Pacific, USA,2001.
- **3.** J.O'M Bockris and A.K.N. Reddy, Modern Electrochemistry;Vol.1and2,2ndEd., Plenum Press, NewYork,1998.
- 4. G.W. Castellan, Physical Chemistry; Narosa, NewDelhi, 1986.

 M. Mortimer and P.G. Taylor, Chemical Kinetics and Mechanism; 1stEd. Royal SocietyofChemistry,UK,2002.

Web- Resources:

- 1. https://www.nature.com
- 2. https://www.amazon.in

Course Outcomes:

On completion of the course the learner will be able to

CO 1:Learn the basic principles and concept of quantum mechanics.

CO 2:Learn Debye Huckel onsager equation and Debye- Falkenhagen effect and we in effect to different electro Chemical system.

CO 3:Describe the main components of power storage system.

CO 4:Provide knowledge on fundamental understanding of chemical kinetics and to establish a relationship between the rate of reaction and the concentration of the reactants (the rate law, or rate equation).

CO 5:Acquire knowledge about classical thermodynamics.

Mapping of Course outcomes with Programme outcomes / Programmes Specific outcomes:

CO/PO			РО						PSO	
	1	2	3	4	5	1	2	3	4	5
CO1	S	W	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	М	S	Μ	S	S	S	S	S	S

S- Strongly Correlated

- **M- Moderately Correlated**
- W- Weakly Correlated
- **N- No Correlation**

Semester- III / Core Practical -V	PHYSICAL CHEMISTRY PRACTICAL I	Course Code:PGQLY
Instruction Hours: 6	Credits: 6	Exam Hours: 6
Internal Marks - 40	External Marks - 60	Total Marks: 100

Course Objectives	• To perform the various techniques of physical chemistry experimentary	ments.							
	experiments.								
	CONTENT	HOURS							
	Any ten experiments (to be decided by the course teacher) out of								
	the following.								
	a. Kinetics-acid hydrolysis of ester–comparison of strengths of acids.								
	b. Kinetics-acid hydrolysis of ester-determination of energy of								
	activation(Ea).								
	c. Kinetics - saponification of ester – determination of ethyl acetate by	6							
	c. Kinetics - saponification of ester – determination of ethyl acetate by conductometry.								
	d. Kinetics - persulfate – iodine reaction – determination of order,								
	effective of ionic strength on rate constant.								
	e. Determination of molecular weight of substance by transition								
	temperature method.								
	f. Determination of molecular weight of substances by Rast method.								
	g. Determination of Critical Solution Temperature (CST) of phenol -								
	water system and effect of impurity on CST.								
	h. Study of phase diagram of two components forming a simple								
	eutectic.								
	i. Study of phase diagram of two components forming a								
	compound.								
	j. Study of phase diagram of three components system.								
	k. Determination of molecular weight of substances by cryoscopy.								
	l. Determination of integral and differential heat of solutions by								
	colorimetry.								
	m. Polymerization - rate of polymerization of acrylamide.								
	n. Distribution law – study of Iodine-Iodine equilibrium.								

o. Distribution law – study of association of benzoic acid in benzene.								
p. Adsorption – oxalic acid/ acetic acid on charcoal using								
Freundlich isotherm								

Reference Books:

- 1. B.P.Levitt, Findlay's Practical Physical Chemistry;9thEd., Longman,1985.
- J.N. Gurtuand R.Kapoor, Advanced Experimental Chemistry; Vol.1-Physical, S.ChandandCo., NewDelhi,1987.

Course Outcomes:

On completion of the course the learner will be able to

CO 1:Draw the phase diagram 3 component systems and analyze it

CO 2:Determine the kinetics of the reactions

CO 3:Predict the concentration of two analytes in a mixture

Mapping of Course outcomes with Programme outcomes / Programmes Specific outcomes:

CO/PO	РО						PSO			
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	М	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S

S- Strongly Correlated

M- Moderately Correlated

W- Weakly Correlated

INDUSTRIAL CHEMISTRY	Course Code:PGQE2
Credits: 6	Exam Hours: 3
External Marks -75	Total Marks: 100
	Credits: 6

Cognitive	K1- Acquire / Remember	
Level	K2- Understanding	
	K3- Apply	
	K4- Analyze	
	K5- Evaluate	
	K6- Create	
Course	• Understand and develop efficacy in planning, designing, production proce	essing and
Objectives	marketing	
	• Study water testing treatment and petroleum refining.	
	• Acquire in depth knowledge of basic and applied area of industrial chemistry.	
	• Know the industrial production of soaps, detergents and perfumes.	
	• Learn the process of photography.	
UNIT	CONTENT	HOURS
Ι	BASICIDEAS ABOUT UNIT OPERATION	
	Basic ideas about unit operation – Flowcharts – Chemical conversion – Batch	18
	versus continuous processing - chemical process selection - design - chemical	
	versus continuous processing – chemical process selection – design – chemical process control – chemical process economics – market evaluation – plant	
	process control – chemical process economics – market evaluation – plant	
II	process control – chemical process economics – market evaluation – plant location –management in productivity and creativity. Research & development	
II	process control – chemical process economics – market evaluation – plant location –management in productivity and creativity. Research & development and its role in chemical industries.	
II	process control – chemical process economics – market evaluation – plant location –management in productivity and creativity. Research & development and its role in chemical industries. PETROLEUM AND DETERGENTS	18
II	process control – chemical process economics – market evaluation – plant location –management in productivity and creativity. Research & development and its role in chemical industries. PETROLEUM AND DETERGENTS Water conditioning for chemical factories – reuse – methods of	18
II	 process control – chemical process economics – market evaluation – plant location –management in productivity and creativity. Research & development and its role in chemical industries. PETROLEUM AND DETERGENTS Water conditioning for chemical factories – reuse – methods of conditioning demineralization – precipitation – desalting – industrial and 	18
II	 process control – chemical process economics – market evaluation – plant location –management in productivity and creativity. Research & development and its role in chemical industries. PETROLEUM AND DETERGENTS Water conditioning for chemical factories – reuse – methods of conditioning demineralization – precipitation – desalting – industrial and sewage waste water treatment. Vegetable oils – Refining of edible oils – solvent	18
II	 process control – chemical process economics – market evaluation – plant location –management in productivity and creativity. Research & development and its role in chemical industries. PETROLEUM AND DETERGENTS Water conditioning for chemical factories – reuse – methods of conditioning demineralization – precipitation – desalting – industrial and sewage waste water treatment. Vegetable oils – Refining of edible oils – solvent extraction – processing of animal fat – hydrogenation – inter esterification –	18

	methods.	
III	PULP, PAPER AND PLASTICS	
	Pulp and paper industries - Sulphite, Sulphate, Soda, Ground wood pulp for	18
	paper manufacture of paper – speciality paper – paper stock – structural boards.	
	Plastics – manufacture – resin – manufacturing processes-condensation	
	polymerization – manufacture of laminates and other derivatives –	
	Hexamethylene tetramine plastics – vinyl esters. Wood conversions – Hydrolytic	
	wood – Phenolic treatment wood – chip wood and their manufacture &	
	advantages – fire retarding wood. (18Hrs)	
IV	PERFUMES	18
	Introduction - Definition - uses and economicsproduction of natural and	
	synthetic perfumes – Flower perfumes – Fruit flavours – artificial flavours.	
	(18Hrs)	
V	SUGAR CHEMISTRY AND PHOTOGRAPHY	
	Sugar manufacture – starch and related products – miscellaneous starch.	18
	Manufacture of industrial alcohol – Butanol - acetone – vinegar – acetic acid –	
	citric acid – lactic acid by fermentation. Industrial and military explosives –	
	manufacture pyro techniques - manufacture of safety matches. Colour	
	photography – theory – material sand process-special applications of	
	photography. (18Hrs)	

- 1. Charkarbharthy BN, Industrial Chemistry, Oxford and IBH Publishing.Co.1stEdition.NewDelhi.
- 2. Danielsetal., Experimental Physical chemistry, 7thEd, NewYork,McGrawHill,1970.
- 3. Sharma BK, Industrial Chemistry, geol Publishing House, Meerut.

Reference Books:

- 1. Norris Shreve.R. and Joseph.A.BrinkJr-Chemical process Industries–.McGrawHill, International Book Company,London.
- 2. BrainA.C.S.Remhold-Production and properties of Industrial Chemicals NewYork
- 3. Burgh, A Fermentation industries Interscience, New York.
- 4. Gilbert .J. Handbook of Technology and Engineering-, Van Nostr and Reinhold, London.
- 5. Guthrie. V-Petroleum products Handbook. McGrawHill, Tokyo.

Web- Resources:

- 1. https://www.essentialchemicalindustry.org
- 2. https://www.tandfonline.com

Course Outcomes:

On completion of the course the learner will be able to

CO 1:Identify and understand the unit operations involved in a process

CO 2:Design common heat exchangers like double pipe and shell & tube to determine relevant design parameters

CO 3:Understand the commercial processes used for there fining and processing of natural gas and crude petroleum

CO 4:Solve materials and energy balances alone and simultaneously on chemical process system.

Mapping of Course outcomes with Programme outcomes / Programmes Specific outcomes:

CO/PO	РО				PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	М	Μ	S	S
CO3	S	S	S	S	М	S	S	S	S	S
CO4	S	S	S	Μ	М	S	S	S	S	М

S- Strongly Correlated

M- Moderately Correlated

W- Weakly Correlated

Semester-III / Elective Course- II	BIO INORGANIC CHEMISTRY	Course Code: PGQE2
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K1- Acquire / Remember	
Level	K2- Understanding	
	K3- Apply	
	K4- Analyze	
	K5- Evaluate	
	K6- Create	
Course	• Gain knowledge about bio inorganic molecules and their role in biology.	
Objectives	• Understand the control and assembly of bio minerals.	
	• Study the role of metal ions in biological process.	
	• Learn chemotherapy with on-essential elements.	
	• Introduce advanced topics in bioinorganic chemistry.	
UNIT	CONTENT	HOURS
Ι	GENERAL PRINCIPLES OF BIO INORGANIC CHEMISTRY	10
	Occurrence and availability of Inorganic elements – Biological function of	18
	inorganic elements - Biological ligands for metal ion coordination of proteins	
	and Nucleic acids as ligands. Other metal binding molecules like prosthetic	
	groups, coenzyme B12, bleomycin and siderophores. Relevance of Model	
	Compounds - Communication roles for metals in biology - metal ion	
	transport and storage.	
II	BIO MINERALISATION	
	Control and assembly of advanced materials in Biology – Nucleation and crystal	18
	growth various bio minerals – calcium phosphate – calcium carbonate –	
	Amorphous silica, iron bio minerals – strontium and barium sulphate.	
	BIO CHEMICAL BEHAVIOUR OF INORGANIC RADIO NUCLIDES	

	Radiation risks and Medical benefits-Natural and Man made radio isotopes. Bio	
	norganic chemistry of Radio pharmaceuticals – Technetium.	
III	FUNCTION AND TRANSPORT OF ALKALI AND ALKALINE EARTH	
	METALION	18
	Characterization of K ⁺ ,Na ⁺ ,Ca ²⁺ ,and Mg ²⁺ - complexes of alkali and alkal in earth	
	netal ions with macromolecules – Ion channels-Ion pumps. Catalysis and	
	egulation of bio energetic processes by the Alkaline Earth Metalions Mg ²⁺ and	
	$Ca^{2+.}$	
IV	CHEMOTHERAPY	18
	Chemotherapy with compounds of certain non - essential elements. Platinum	
	complexes in cancer therapy – Cis platin and its mode of action – Cytotoxic	
	compounds of other metals – Gold containing drugs as anti - rheumaticagents and	
	heir mode of action-Lithium in Pschyco pharmocological drugs.	
V	MEDICINAL BIO INORGANIC CHEMISTRY	
	Bio inorganic chemistry of essentially toxic metals. Lead, Cadmium, Mercury,	18
	Aluminium, Chromium, Iron, Plutonium, Detoxification by metal chelation. Drug	
	that act by binding at the metalsites of metalloenzymes.	

- 1. D.E.Fenton, Bio coordination Chemistry, Oxford Chemistry, Primer Series, Oxford Science Publications, Oxford, 1995.
- 2. G.L.Zubay, Biochemistry, WMC Brown publishers, Chicago, 1998.

Reference Books:

1. Ivano Bartini, Harry B.Gray Stephen J.Lippard, Joan Deverstonealentine - Bio Inorganic

Chemistry-Viva Book spvtltd.

2. AjayKumar Bhagi, G.R.Chatwal, Bio Inorganic Chemistry and Supra Molecular Chemistry– Himalaya Publishing House.

Web - Resources:

- 1. https://www.hindawi.com
- 2. https://www.ionicviper.org

On completion of the course the learner will be able

CO 1:Understand the effect of various ligand field strengths on d-metal ions and find out ground state terms with their energies, microstates, degeneracy and microstate table for different transition metal ions and complexes.

CO 2:Understand electronic spectra of complexes w.r.t. spin and orbital selection rules, various transitions, charge transfer spectra and luminescence spectra with LASER application.

CO 3:Know the magnetic properties of complexes and understand spin-only and effective magnetic moments, Zeeman effect, properties of complexes with A, E, and T terms.

CO 4:Understand of Bioinorganic Chemistry: Use of metals in biological systems, various aspects of coordination chemistry related to bioinorganic research, metallobiopolymers, their structure,function, role of metal ion, etc.

CO 5:Get the knowledge of Biochemistry of metals like Na, K, Fe, Ca and Mn.

CO/PO			РО						PSO	
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Mapping of Course outcomes with Programme outcomes / Programmes Specific outcomes:

- **S- Strongly Correlated**
- **M- Moderately Correlated**
- W- Weakly Correlated
- **N- No Correlation**

Semester-III / Elective Course- III	GREEN CHEMISTRY	Course Code: PGQE3
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K1- Acquire / Remember	
Level	K2- Understanding	
	K3- Apply	
	K4- Analyze	
	K5- Evaluate	
	K6- Create	
Course	• Study the basic principles and alternative materials of sustainable green cl	hemistry.
Objectives	• Learn the synthesis of ionic liquids and phase transfer catalysis.	-
	• Impart depth knowledge in supported catalysis and bio catalysis.	
	• Gain knowledge about the alternative synthesis, reagent and reaction con	ndition of
	green chemistry.	
	• Focus on the application of greener routes to improve industrial processes	and to
	produce important products.	
UNIT	CONTENT	HOURS
Ι	INTRODUCTION TO GREEN CHEMISTRY	
	Green chemistry - relevance and goals, Anastas, twelve principles of green	18
	chemistry - Tools of green chemistry, alternative starting materials, reagent,	
	catalysts, solvent, and processes with suitable examples.	
II	MICROWAVE ACTIVATION ORGANIC SYNTHESIS (MAOS)	
	Microwave activation – advantage of microwave exposure – specific effects	18
	of microwave - Neat reactions - solid supports reactions - Functional group	
	transformations – condensations reactions – oxidations - reductions reactions –	
	transformations – condensations reactions – oxidations - reductions reactions – multi - component reactions.	
III		
III	multi - component reactions.	18
III	multi - component reactions. IONIC LIQUIDS AND PTC	18
III	multi - component reactions.IONIC LIQUIDS AND PTCIntroduction - synthesis of ionic liquids - physical properties - applications in	18

V	ALTERNATIVE SYNTHESIS, REAGENTS AND REACTION	
	CONDITIONS	18
	A photo chemical alternative to Friedel – crafts reactions –	
	Dimethylcarbonateasa methylatingagent - the design and applications of green	
	oxidants-supercritical carbon dioxide for synthetic chemistry.	

1. V.K.Ahluwalia, Green Chemistry–Environmentally benign reactions - ,Ane Books India (publisher).(2006).

Reference Books:

- 1. Paul T.Anastas& Tracy C.Williamson, Green chemistry Designing chemistry for environment– Second Edition(1998).
- 2. Paul T.Anastas &Tracy C.Williamson. Green chemistry –Frontiers in benign chemicals synthesis and processes-Oxford University Press(1998).
- Rashmi Sanghi &M.M. Srivastava, Green chemistry Environment friendlylternatives -Narora PublishingHouse,(2003)

Web - Resources:

- 1. https://www.ncbi.nlm.nih.gov
- 2. https://en.m.wikipedia.org

Course Outcomes:

On completion of the course the learner will be able to

CO 1:Explain Green chemistry and sustainability which relates to problems of societal concern.

CO 2:Designed of chemical products and processes that reduce or eliminate the use and generation of hazardous substances.

CO 3:Describe Green chemistry and sustainability developments that affect society, the environment and economic development.

CO 4 :Analyze a process and identify parameters that make environmentally friendly/ sustainable /green.

CO 5:Integrate, synthesize, and apply knowledge of the relationship between science and technology and societal issues in both focused and broad interdisciplinary contexts.

CO/PO	PO3						I	PSO		
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	М	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Mapping of Course outcomes with Programme outcomes / Programmes Specific outcomes:

S- Strongly Correlated

M- Moderately Correlated

W- Weakly Correlated

Semester-III /	Molecular Modeling and Drug	Course Code: PGQE3
Elective Course- III	Design	
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K1- Acquire / Remember	
Level	K2- Understanding	
	K3- Apply	
	K4- Analyze	
	K5- Evaluate	
	K6- Create	
Course	• Gain knowledge and modern approaches used in molecular modeling.	
Objectives	• Identify and design molecules for new medication.	
	• Acquire the capacity to apply the ideas of quantum and molecular mechanics	s, hydrogen
	bonding and its significance in the application of drug development.	
	• Learn the drug design and pharmacokinetics.	
	• Study the structure, properties and mechanism of action of drugs.	
UNIT	CONTENT	HOURS
Ι	Molecular Modelling in Drug Discovery	
	Drug discovery process, Role of Bioinformatics in drug design, Methods of	18
	computer aided drug design, ligand design methods, drug design approaches,	
	Target identification and validation, lead optimization and validation, Structure	
	and ligand based drug design ,modeling of target - small molecule interactions,	,
	Molecular simulations. Protein Modelling.	
II	Quantum Mechanics and Molecular Mechanics	
	Features of molecular mechanics, force fields; Bond structure and bending angles	18
	- electrostatic, van derWaals and non - bonded interactions, hydrogen bonding in	L
	molecular mechanics; Derivatives of molecular mechanics energy function;	
	Application of energy minimization.	
III	Nomenclature and Mechanism of Drugs	
	Introduction- Study of drugs- Important terminologies in pharmaceutical	18
	chemistry-Classification and nomenclature of drugs- Nomenclature of some	
	heterocyclic systems- Mechanism of action of drugs - metabolism of drugs -	

	Absorption of drugs – Assay of drugs.	
IV	Drug Design and Pharmacokinetics	18
	Drug design: Variation of substituents, chain extension , ring	
	expansions/contractions, ring variations ringfusions, isosteres, rigidification	
	of the structure, conformational blockers. Pharmacokinetics:	
	Pharmacokinetics issues in drug design- Solubility and membrane	
	permeability- Resistant to hydrolysis and metabolism-Targeting drugs -	
	Reducing toxicity – Prodrugs Methods of administration - Formulation.	
V	Application of Drugs for Treatment	
	Structure, properties and mechanism of action of the following	18
	Antibacterial drugs – Sulpha drugs: Sulphanilamide, sulphadiazine,	
	sulphapyridine. Antibiotics- Chloramphenical, Penicillin,	
	Streptomycin, Antiseptics and disinfectants: Phenol and its derivatives,	
	Halogen compounds and organicmolecules.	
	Analgesics: Morphine, Heroin, Pethidine, Morphine. Anticonvulsant:	
	Barbiturates, Oxazolindiones. Diabetes: Control of diabetes, Insulin. Cancer	
	and anti neo plasticdrugs :Allylatingagents, Antimetabolites, Plantproducts.	
	Cardiovascular drugs: Antiarrhythemic drugs, Antihypertension drugs.	

- 1. A.R.Leach- Molecular Modeling Principles and Application, 2ndedition, Longman Publications, 1996.
- 2. D.Baxivanis and Foulette Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, Wiely Indian Edition, 2001.

Reference Books:

- 1.T K Attwood, DJ Parry-Smith, Introduction to Bioinformatics, Pearson Education, 1st Edition,
- 2.Anand Solomon, Introduction to Cheminformatics 3.Lersenetal,Textbook of Drug design and Discovery, 4thEdition, London and Newyork, 2004.

Web - Resources:

1.https://www.taylofrancis.com

2. https://www.researchgate.net

On completion of the course the learner will be able

CO 1:Identify the steps for designing new drugs, target identification and validation

CO 2:Acquire the capacity to apply the ideas of atomic displacement, Quantum and Molecular Mechanics, bonded interactions, hydrogen bondings and its significance in the application of drug development

CO 3:Execute protein structure prediction and would be able to predict the derivatives of the molecular mechanics energy function

CO 4:Understand the Molecular Dynamics simulation using the simple models, continuous potentialsat constant temperature and pressure

CO 5:Capable to present the docking strategies based on the ligand, receptor and denovo ligand design.

CO/PO	PO3					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Mapping of Course outcomes with Programme outcomes / Programmes Specific outcomes:

S- Strongly Correlated M- Moderately Correlated W- Weakly Correlated N- No Correlation

Semester- IV / Core Course-VIII	PHYSICAL METHODS IN CHEMISTRY II	Course Code:PGQM
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks - 75	Total Marks: 100

Cognitive	K1- Acquire / Remember					
Level	K2- Understanding					
	K3- Apply					
	K4- Analyze					
	K5- Evaluate					
	K6- Create					
Course	• Outline the theory of electronic spectroscopy of metal comp	lexes.				
Objectives	• Derive and apply spectroscopic transition rules for electronic transit	tion in				
	atoms and molecules.					
	• Study in detail IR, Raman and NMR of inorganic compounds.					
	• Learn the EPR, Mossbauer and magnetic properties of metal con	nplexes.				
	• Understand principles and applications of Mossbauer Spectroscopy.					
UNIT	• CONTENT	HOURS				
Ι	ELECTRONIC SPECTROSCOPY					
	Microstates, terms and energy levels for d1-d9ions in cubic and	18				
	square fields -intensity of bands- group theoretical approach to					
	selection rules – effect of distortion and spin-orbit coupling on spectra-					
	evaluation of 10Dq and for octahedral complexes of cobalt and nickel -					
	applications to simple coordination compounds-charge transfer					
	spectra–electronic spectra of $[Ru(bipy)3]^{2+}$. Optical rotator dispersion					
	and circular dichroism and magnetic circular dichroism-					
	applications to metal complexes.					
II	INFRARED AND RAMAN SPECTROSCOPY					
	Vibrations in simple molecules (H_2O , $CO2$) and their symmetry notation	18				
	for molecular vibrations-group vibrations and the limitations-combined					
	uses of IR and Raman spectroscopy in the structural elucidation of					

	simple molecules like N2O, ClF3, NO3 ⁻ , ClO4 ⁻ effect of coordination	
	on ligand vibrations-uses of groups vibrations in the structural	
	elucidation of metal complexes of urea, thiourea, cyanide, thiocyanate	
	and dimethyl sulfoxide.	
	Effect of isotopic substitution on the vibrational spectra of molecules –	
	vibrational spectra of metal carbonyls with reference to the nature of	
	bonding -geometry and number of C-O stretching vibrations (group	
	theoretical treatment)-applications of Raman spectroscopy-resonance	
	Raman spectroscopy.	
III	NMR SPECTROSCOPY	
	Examples for different spin systems-chemical shifts and coupling	18
	constants (spin-spin coupling)involving different nuclei(¹ H, ¹⁹ F, ³¹ P,	
	13C) interpretation and applications to inorganic compounds – Effect	
	of quadrupolar nuclei (² H, ¹⁰ B, ¹¹ B)on the ¹ HNMR spectra.Systems	
	with chemical exchange – evaluation of thermodynamic parameters in	
	simple systems-study of fluxional behavior of molecules - NMR of	
	paramagnetic molecules-isotropic shifts contact and pseudo-contact	
	interactions-lanthanide shift reagents.	
IV	EPR SPECTROSCOPY AND MAGNETIC PROPERTIES	18
	Theory of EPR spectroscopy-spin densities and McConnell	
	relationship –factors affecting the magnitude of g and A tensors in	
	metal species – zero-field splitting and Kramers degeneracy–spectra of	
	V(II), Mn(II), Fe(II), Co(II), Ni(II) and Cu(II) complexes– applications	
	of EPR to a few biological molecules containing Cu(II) and Fe(III) ions.	
	Magnetic properties – types of magnetism – dia ,para, ferro-and	
	antiferro- magnetism-magnetic properties of free ions- first- order	
	Zeeman effect–second –order Zeeman effect–states KT – states << <kt–< th=""><th></th></kt–<>	
	determination of magnetic moments and their applications to the	
	elucidation of structures of inorganic compounds-temperature	
	independent paramagnetism-magnetic properties of lanthanides and	
	actinides– spin cross over in coordination compounds.	

V	Mossbauer Spectroscopy	
	Isomer shifts- quadrupole splitting-magnetic interactions-applications	18
	to iron and tin compounds.NQR spectroscopy - characteristics of	
	quadrupolar nucleus - effects of field gradient and magnetic field	
	upon quadrupolar energy levels- NQR transitions- applications of	
	NQR spectroscopy	
Unit VI	Interpretation of proton NMR spectra of different classes of organic	
Self Study	compounds involving 2d correlations.	

1. R.S.Drago, Physica Methods in Inorganic Chemistry ; Affiliated East-West Press Pvt. Ltd., NewDelhi,2012.

2. R.S.Drago, Physical Methods in Chemistry; Saunders College Publications, Philadelphia, 1992.

F.A.Cotton and G.Wilkinson, Advanced Inorganic Chemistry, 6thEd.,
 Wiley Eastern Company, NewDelhi,1999.

4. P. J.Wheatley, The Determination of Molecular Structure; 2nd Ed., Dover Publications, Mineola,1981.

5. G.J.Leigh, N.Winterton, Modern Coordination Chemistry; Royal Society of Chemistry ,UK,2002.

Reference Books:

1. W.Kemp, Organic Spectroscopy; 3rdEd.,Palgrave ,NewYork,2011.

2. J.R.Dyer, Applications of Absorption Spectroscopy of Organic Compounds, PHIL earning, NewDelhi,2009.

3. Y.R.Sharma, Elementary Organic Spectroscopy–Principles and Chemical Applications; S.Chand and Co., NewDelhi, 1992.

4. P.S.Kalsi, Spectroscopy of Organic Compounds; 6thEd., New Age International Publishers, NewDelhi,2004.

Web- Resources:

1. https://www.elsevier.com

2. https://www.amazon.in

On completion of the course the learner will be able to

CO 1:Explain the general features of absorption and photo electron spectra and their dependence on the sample properties.

CO 2:Able to describe molecular vibration with the interaction of matter and electromagnetic waves.

CO 3:Understand concept of NMR spectroscopy and its applications.

CO 4: Acquire knowledge about EPR spectroscopy and magnetism.

CO 5:Learn principles and applications of Mossbauer Spectroscopy.

Mapping of Course outcomes with Programme outcomes / Programmes Specific outcomes:

CO/PO			РО					Ι	PSO	
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S- Strongly Correlated

M- Moderately Correlated

W- Weakly Correlated

Semester- IV / Core Course-VI	PHYSICAL CHEMISTRY PRACTICAL- II	Course Code:PGQNY
Instruction Hours: 6	Credits: 3	Exam Hours: 6
Internal Marks -40	External Marks-60	Total Marks: 100

Course Objectives	• To perform the various electrical experiments	
	CONTENT	HOURS
	Any ten experiments (to be decided by the course teacher) out of the	
	following experiments.	
	a. Conductometry –acid- alkali titrations.	
	b. Conductometry – precipitation titrations.	
	c. Conductometry – displacement titrations.	<i>,</i>
	d. Conductometry – determination of dissociation constant of weak	6
	acids.	
	e. Conductometry – solubility product of sparingly soluble silver	
	salts.	
	f. Verification of Onsager equation- conductivity method.	
	g. Determination of degree of hydrolysis and hydrolysis	
	constant of a substance.	
	h. Potentiometric titrations – acid alkali titrations.	
	i. Potentiometric titrations – precipitation titrations.	
	j. Potentiometric titrations- redox titrations.	
	k. Potentiometry- determination of dissociation constant of weak	
	acids.	
	l. Potentiometry– determination of solubility of silver salts.	

m. Potentiometry-determination of activity and activity coefficient
of ions.
n. pH Titration of <i>ortho</i> - phosphoric acid.
o. To determine the relative strength of two acids by
conductance measurements.
p. To determine the pH of a buffer solution using a quinhydrone
electrode.

Reference Books:

- J.B.Yadav, Advanced Practical Physical Chemistry; 20thEd., GOEL Publishing House, Krishna Prakashan Media Ltd., Chennai, 2001.
- B.P.Levitt, Findlay's Practical Physical Chemistry ;9thEd., Longman, London, 1985.
- J. N. Gurtur and R. Kapoor, Advanced Experimental Chemistry; Vol. 1-Physical, S.ChandandCo.Ltd,NewDelhi,1997.

Course Outcomes:

On completion of the course the learner will be able to

CO 1:Understand conductometric titrations of: Strong acid Vs. strong base (ii) Weak acid vs. strong base, (iii) Mixture of strong acid and (iv) weak acid vs strong base, Strong acid vs. weak base.

CO 2:Develop skills in Potentiometric titrations of: (i) Strong acid vs .strong base (ii) Weak acid vs. Strong base

Mapping of Course outcomes with Programme outcomes / Programmes Specific outcomes:

CO/PO	РО					P	PSO			
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S

S- Strongly Correlated

M- Moderately Correlated

W- Weakly Correlated

Semester- IV /Elective course-IV	APPLIED CHEMISTRY	Course Code: PGQE4
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks - 25	External Marks- 40	Total Marks: 100

Cognitive	K1- Acquire / Remember	
Level	K2- Understanding	
	K3- Apply	
	K4- Analyze	
	K5- Evaluate	
	K6- Create	
Course	• Study about quality control measurements in industries.	
Objectives	• Understand the textile processing and dyeing.	
	• Learn the classification and application of paint.	
	• Get awareness about the importance of wealth from waste.	
	• Know the mechanism of drug action and metabolism of drugs.	
UNIT	CONTENT	HOURS
Ι	QUALITY CONTROL MEASUREMENTS	
	Moisture, ash, crude protein, fat, crude fibre, carbohydrates, calcium,	18
	potassium ,sodium and Phosphate - Food adulteration - common	
	adulterants in food, contamination of food stuffs Microscopic examination	
	of foods for adulterants - Pesticides analysis in food products - analysis of	
	toxic metalsin food (Hg,Cd,Co,SnandCr) - Determination of iodine,	
	Saponification and acid value of anoil- Food standards- ISI and Agmark.	
II	TEXTILE PROCESSING	
	Pretreatment : Sizing, Desizing- acid method, Scouring- kier boiling	18
	method, Bleaching - hypochlorite method, Mercerization, fastness	
	properties – washing, rubbing and light fastness	
	Dyeing: Dye fibre bond, % ofshade, M: L ratio, % of exhaustion,	
	equilibrium absorption, effect of electrolyte. Reactive dye - principles of	
	dyeing, Polyester dyes - carrier dyeing - mechanism and high temperature is	

	dyeing. Mordant dyes- principles- specific examples. Acid dyes- dyeing	
	mechanism-role of electrolyte and dye bath assistants. Vat dyes- vatting-	
	dyeing-oxidation and after treatment.	
III		
	PAINT	18
	Paint – definitions – ingredients and their role – terminology – emulsion,	
	lacquer. Enamel – pot life, shelf life –varnish– thixotropy–classification	
	of paints based on drying mechanism-undercoats–Pigments–classification	
	(organic &Inorganic)– functions–properties such a shiding power, light	
	fastness, particle size and shape Solvents used for paints– flashpoint.	
	Vehicles: Oil- drying mechanism, Description of Alkyd, Epoxy,	
	Polymetyl methacrylate, Urea formaldehyde, Melamine formaldehyde,	
	urethane resins. Additives – Anti skinning agents, Powder coating,	
	Solventless finish.	
IV	WEALTH FROM WASTE (RECYCLING)	18
	Introduction- Recycling Technique - Construction materials from waste-	
	Medicines from agricultural waste- liquid fuels from agricultural -Urban	
	Medicines from agricultural waste- liquid fuels from agricultural –Urban waste and bagasse for electricity Agricultural waste for biomass into cheap	
	waste and bagasse for electricity Agricultural waste for biomass into cheap	
	waste and bagasse for electricity Agricultural waste for biomass into cheap and efficient fuel– Bacteria for paper making– Waste into objects of daily	
V	waste and bagasse for electricity Agricultural waste for biomass into cheap and efficient fuel– Bacteria for paper making– Waste into objects of daily	
V	waste and bagasse for electricity Agricultural waste for biomass into cheap and efficient fuel– Bacteria for paper making– Waste into objects of daily use fuel- How to use garbage to generate power.	18
V	waste and bagasse for electricity Agricultural waste for biomass into cheap and efficient fuel– Bacteria for paper making– Waste into objects of daily use fuel- How to use garbage to generate power. MEDICINAL CHEMISTRY	18
V	waste and bagasse for electricity Agricultural waste for biomass into cheap and efficient fuel– Bacteria for paper making– Waste into objects of daily use fuel- How to use garbage to generate power. MEDICINAL CHEMISTRY Mechanism of drug action and Metabolism of Drugs: Mechanism of action	18
V	 waste and bagasse for electricity Agricultural waste for biomass into cheap and efficient fuel– Bacteria for paper making– Waste into objects of daily use fuel- How to use garbage to generate power. MEDICINAL CHEMISTRY Mechanism of drug action and Metabolism of Drugs: Mechanism of action – Drug Receptors and Biological responses– Mechanism of different types 	18
V	 waste and bagasse for electricity Agricultural waste for biomass into cheap and efficient fuel– Bacteria for paper making– Waste into objects of daily use fuel- How to use garbage to generate power. MEDICINAL CHEMISTRY Mechanism of drug action and Metabolism of Drugs: Mechanism of action – Drug Receptors and Biological responses– Mechanism of different types of drug action – Metabolism of drugs – Chemical pathway of drug 	18

- 1. B.K. Sharma, H.Karur, Environmental chemistry Goel publishing House, Meerut.
- 2. B.K. Sharma Industrial chemistry- Goel publishing House, Meerut.
- 3. Gareth Thomas, Medicinal Chemistry: An Introduction, Wiley-Inter science, 2ndedition,2008.

Reference Books:

- 1. B.K.Sharma-Instrumental methods of chemical Analysis, Goel publishing House, Meerut
- G.P.A. Turner –Principles of Paint Chemistry and Introduction to paint Technology Oxford & IBH Publishing & Co Paint Film Defects.
- 3. Wilson and Giswald's Textbook of Organic Medicinal and Pharmaceutical Chemistry by John Block and John M Beale (Eds), Lippincott Williams & Wilkins, 11thedition,2003.
- 4. Richard B.Silverman, The Organic Chemistry of Drug Design and Drug Action, Academic press,2ndedition,2004

Web- Resources:

- 1. https/pubs.acs.org
- 2. https://www.iiserbpn

Course Outcomes:

On completion of the course the learner will be able to

CO 1: Able to work in quality control or analytical laboratories.

CO 2:Identify industrial problems related to chemistry and find solutions for them

CO 3:Gain knowledge about paints and vehicles

CO 4:Reduce waste generation, effective handlings utilization and recycling of waste

CO 5:Explain the relationship between the structure and biological activity of drug molecule.

Mapping of Course outcomes with Programme outcomes / Programmes Specific outcomes:

CO/PO	PO							PSO		
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S- Strongly Correlated M- Moderately Correlated W- Weakly Correlated N- No Correlation

Semester-III / Elective Course- IV	FORENSIC SCIENCE	Course Code: PGQE4
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K1- Acquire / Remember	
Level	K2- Understanding	
	K3- Apply	
	K4- Analyze	
	K5- Evaluate	
	K6- Create	
Course	• Study about contamination of food, detection and anti dote for food po	oison
Objectives	Introduce advanced topics in Forensic Science	
	• Learn about crime detection	
	• Detect forgery and counter feting	
	• Understand the misuse of drugs	
UNIT	CONTENT	HOURS
Ι	Transportation	
	Drunken driving: breath analyzer for ethanol. Incendiary and timed	18
	bombs in road and rail way tracks. Defusing live bombs. Hit-and-go	
	traffic accidents: paint analysis by AAS. Soil of toxic and corrosive	
	chemicals (e.g., conc.acids) from tankers.	
II	Crime detection	10
	Accidental explosions during manufacture of matches and fire works.	18
	Human bombs, possible explosive (gelatin sticks, RDX). Metal detector	
	devices and other security measures for VVIP. Composition of bullets	
	and detection of powder burns.	
	Scene of crime: finger prints & their matching using computer records.	
	Smell tracks & police dogs. Analysis of blood & other body fluid	
	sinrape cases. Typing of blood. DNA finger printing or tissue	

	identification in dismembered bodies. Blood stain son clothing.	
	Cranial analysis (head and teeth).	
III	Forgery & counter feiting	
	Detecting forgery in blank cheques / drafts and educational records	18
	(mark lists, Certificate) using UV light . Alloy analysis using AAS to	
	detect counterfeit coins .Checking silver line water mark in currency	
	notes.Jewellery : Detection of gold purity in 22carat ornaments,	
	detecting gold plated jewels	
IV	Medical aspects aids: cause & prevention. Misuse of scheduled drugs.	18
	Burns & their treatment by plastic surgery. Metabolite analysis using	
	mass spectrum-gas chromatography. Detecting steroid consumption	
	among athletes and racehorses.	
V	Transportation	
	Drunken driving: breath analyzer for ethanol. Incendiary and timed	18
	bombs in road and rail way tracks. Defusing live bombs. Hit-and-go	
	traffic accidents: paint analysis by AAS. Soil of toxic and corrosive	
	chemicals (e.g., conc.acids) from tankers.	

- Subrahmanyam BV,Perkins Textbook of Medical Jurisprudence forensic medicine and toxicology,8th Edition 2019.
- 2. Ignatius PC, Textbook of forensic medicine and toxicology, 4thEdition2019.
- 3. PillayVV, NACPFMT'S Practical Medicolegal manual(vol-1)1stEdition2019.

Reference Books:

- 1. . T.H James Forensic Sciences, Stanley Thornes Ltd.
- 2. 2. Richard, Criminalistics- An introduction to Forensic Science, 8th Edition, So festein, prentice hall.

Web- Resources:

https://www.forensicresources.org2.https://www.all-about-forensic-resources.com

On completion of the course the learner will be able

CO 1:To emphasize the importance of scientific methods in crime detection.

CO 2:To disseminate information on the advancements in the field of forensic science.

CO 3:To highlight the importance of forensic science for perseverance of the society.

CO 4:To review the steps necessary for achieving highest excellence in forensic science.

CO 5:To generate talented human resource, commiserating with latest requirements of forensic science.

Mapping of Course outcomes with Programme outcomes / Programmes Specific outcomes:

СО/РО		РО						PSO			
	1	2	3	4	5	1	2	3	4	5	
CO1	S	S	S	S	S	S	S	S	S	S	
CO2	S	S	S	S	S	S	S	S	S	S	
CO3	S	S	S	S	S	S	S	S	S	S	
CO4	S	S	S	S	S	S	S	S	S	S	
CO5	S	S	S	S	S	S	S	S	S	S	

S- Strongly Correlated

M- Moderately Correlated

W- Weakly Correlated

Semester-IV / Elective Course-V	RECENT TRENDS IN CHEMISTRY	Course Code:PGQE5
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K1- Acquire / Remember	
Level	K2- Understanding	
	K3- Apply	
	K4- Analyze	
	K5- Evaluate	
	K6- Create	
Course	Gain knowledge in Nano Chemistry.	
Objectives	• Acquire the ideas about material science.	
	• Learn about Supra molecular chemistry in solutions.	
	• Understand basic principles & reactions in Green Chemistry.	
	• Study basic knowledge and resources in chem. informatics.	
UNIT	CONTENT	HOURS
Ι	NANO CHEMISTRY Nano chemistry & fundamentals–Introduction–electronic structure–	18
	transport properties-mechanical properties- physical properties- applications- Nanotubes of other materials.	
	Nano Science: Self assembled monolayers–Introduction– monolayersongold–growthprocess–phasetransitions – pattering mono layers– mixed mono layer – SAME and applications.	
II	MATERIAL SCIENCE	
	Crystal-crystal lattice-crystal defects- fullerene super conductors-High	18
	temperature materials-biomaterials-thermo electronic materials- nano	
	phase materials- smart material-NLO materials-conducting polymers.	
III	SUPRA MOLECULAR CHEMISTRY	
	Supra Molecular Chemistry - Concepts and Languages of supramolecular	18
	Chemistry – Supramolecular Reactivity and Catalysis. Catalysis by	
	Reactive Macrocyclic Cation Receptor Molecules. Catalysis by Reactive	

	Anion Receptor Molecules. Catalysis with Cyclophanes. Type Receptors.	
	Supramolecular Metallocatalysis. Cocatalysis: Catalysis of Synthetic	
	reactions. Biomolecular and Abiotic catalysis. Supramolecular Chemistry	
	insolution Cyclodextrin, Micelles, Dendrimmers,	
	Gelators.Classificationandtypicalreactions-Applications.	
IV	GREEN CHEMISTRY	18
	Green Chemistry- PhotoChemical Principles- Photooxidation-	
	photodegradation-Removal of hazardous chemicals from water -	
	cleaner production concept-Implementation -Government rule.	
V	CHEM- INFORMATICS	
	Chem-Informatics: Introduction - Evaluation - History and uses -	18
	molecular modeling using computer Basic idea - chemical information data	
	base design and their management – data base concepts –structural	
	languages chemical database design Chemical information sources-	
	chemical information researches formula searching.	

- 1. Jainand Jain, Engineering Chemistry, Dhanpat Rai Publicating Co.
- 2. Shikha Agarwal, Enginnering Chemistry, Cambridge UniversityPress,2015.

Reference Books:

- 1 Vairametal., Engineering Chemistry, 2nd edition, Wiley India PvtLtd., 2014.
- 2 Prasanth Rath, Engineering Chemistry, Cengage learning, 2015.
- 3 S.S.Dara, A Text Book of Engineering Chemistry, S. Chand & Co. Ltd.,
- 4 H.D.Gesser, Applied Chemistry, Springer Publishers. B. Sedimentary Basins of India ONGC bulleting.

Web- Resources:

1.https://www.api.org

2. htps://www.opisnet.com.

On completion of the course the learner will be able

CO 1:Provide perspectives on future Nano chemistry developments

CO 2:Follow new developments in material application field.

CO 3:Explain importance of materials in materials science and scientific field.

CO 4:A functional understanding of the field of green chemistry.

CO 5: Chemoinformatics is a rather new discipline in science. It has been described as the application of

informatics methods to solve chemical problems.

Mapping of Course outcomes with Programme outcomes / Programmes Specific outcomes:

CO/PO		РО							PSO	
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S- Strongly Correlated

M- Moderately Correlated

W- Weakly Correlated

Semester-IV / Elective Course- VI	PETROL AND PETROCHEMICAL PRODUCTS	Course Code: PGQE5		
Instruction Hours: 6	Credits: 5	Exam Hours: 3		
Internal Marks -25	External Marks-75	Total Marks: 100		

Cognitive	K1- Acquire / Remember	
Level	K2- Understanding	
	K3- Apply	
	K4- Analyze	
	K5- Evaluate	
	K6- Create	
Course	• Understand the chemistry of crude oil.	
Objectives	• Learn the properties of petroleum products	
	• Study the chemistry of natural gas refining, distillation and separation technic	lue.
	• Get knowledge about the various conversion processes in petroleum products	
	• Know the manufacture methods of Lube oil, Petroleum Waxes, bituments.	
UNIT	CONTENT	HOURS
Ι	Crude oil	
	Petroleum exploration production and refining of crude oils. Crude oils:	18
	Chemistry and composition (characteristics and constituents of crude oils).	
II	Properties of petroleum products	
	Quality control of Petroleum products- Classification of laboratory tests,	18
	distillation, vapour pressure, flash and fire points, octane number,	
	performance number, cetane number ,aniline point, viscosity index, calorific	
	value, smoke point, char value, viscosity, viscosity index, penetration tests,	
	cloud and pour points, drop point of grease, melting and settling points of	
	wax, softening point of bitumen, induction period of gasoline, thermal	
	stability of jet fuels, gum content, Total sulphur, Acidity and alkalinity,	
	Copper strip corrosion test, Silver - strip colour test for ATF, Ash, Carbon	
	residue (conradson method, Rams bottom method) colour, Density and	

	specific gravity, refractive index of hydrocarbon liquids, Water Separation	
	Index Modified (WSIM), ductility.	
III	Natural gas & conversion process	
	Petroleum Products- Composition, properties & specification of	18
	LPG, Naphtha, motorspirit. Kerosene, Aviation turbine fuels, diesel fuel soils,	
	petroleum hydrocarbon solvents, Lubricating oils (automotive engine oils,	
	Industrial lubricating oils electrical insulating oils, jute batching oils, white	
	oils, steam turbine oils, metal working oils etc.) Petroleum waxes bituments,	
	Petroleum coke. Crude oil distillation-Desalting of crude oils, atmospheric	
	distillation of crude oil, vacuum distillation of atmospheric residue. Thermal	
	conversion process - Thermal cracking reactions, thermal cracking, vis	
	breaking(conventional vis breaking and soaker vis breaking) coking (delayed	
	coking, fluidcoking, flexicoking), calcinations of greencoke	
IV	Catalytic conversion	18
	Catalytic conversion process-Fluid catalytic cracking, catalytic reforming,	
	hydro cracking catalytic alkylation, catalytic isomerisation, catalytic	
	polymerization. Finishing Process-Hydrogen sulphide removal processes,	
	sulphur conversion processes, sweetening processes(caustic treatment,	
	solutizer process, doctor treating process, copper chloride weetening,	
	Hypochlorite sweetening, air and inhibitor treating process, merox processes,	
	sulphuric acid treatment, clay treatment, solvent extraction processes(edeleanu	
	process, udex process, sulfolane process), hydro treating processes.	
V	Lube oil & bitument	
	Lube oil Manufacturing process – Evalution of crude oils for lube oil base	18
	stocks, vacuum distillation, solvent deasphalting solvent extraction of lube oil	
	fractions (furfural, NMP and Phenol), solvent dewaxing, hydro finshing.	
	Manufacture of petroleum waxes (wax sweating, solvent deoiling)	
	Manufacture of bituments- Selection of crude oil, methods of manufacture of	
	bituments. (distillation, solvent).	

- 1. T.Pradeep "Nanotheessentials- understanding Nano Science and NanoTechnology "TataMcGraw -hill publishingLtd.,NewDelhi, 2007.
- 2. M.M. Srivatsava, Rashmi Sangi "Chemistry for Green Environment, Narosa publishing House, NewDelhi2005.

Reference Books:

- 1. P. T. Anastas and J. C. Warner, Green chemistry Theory and Practice; Oxford University Press, NewYork, 2005.
- 2. J.W. Steed& J.L.Atwood, Supramolecula rChemistry, Wiley, 2000.
- 3. Frank Jenson, Introduction to Computational Chemistry, Wiley, Newyork, 1999.

Web - Resources:

- 1. https://www.understandingnano.com
- 2. <u>https://webs.iiitd.edu.in</u>

Course Outcomes:

On completion of the course the learner will be able

CO 1:Learn the control of production Chemicals for the oil & gas industry

CO 2:Understand hydrogen carbon... terminology, definitions, classifications, properties and chemical composition and associated metals, and including natural gas properties

CO 3:Acquire knowledge about the chemistry of the petroleum process as it relates to applications

CO 4:Know the equipment and procedures for evaluating drilling fluid performance

CO 5:Gain knowledge about clay mineralogy and the colloid chemistry of drilling fluids

Mapping of Course outcomes with Programme outcomes / Programmes Specific outcomes:

CO/PO			РО						PSO	
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S- Strongly Correlated M- Moderately Correlated W- Weakly Correlated N- No Correlation

CORE COURSE PROJECT

Semester-IV	CORE COURSE PROJECT	Course Code:PGQP
Instruction Hours: 6	Credits: 6	Exam Hours: 6
Internal Marks -25	External Marks-75	Total Marks: 100